1
|
Senaratne NLM, Chong CW, Yong LS, Yoke LF, Gopinath D. Impact of waterpipe smoking on the salivary microbiome. FRONTIERS IN ORAL HEALTH 2023; 4:1275717. [PMID: 38024144 PMCID: PMC10665852 DOI: 10.3389/froh.2023.1275717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background While oral mirobial dysbiosis due to tobacco smoking has been studied thoroughly, there is limited data on the effect of waterpipe smoking on the oral microbiome. This study aims to compare the salivary microbiome between waterpipe smokers and non-smokers. Materials and methods Unstimulated saliva samples were collected from 60 participants, 30 smokers and 30 non-smokers in Kuala Lumpur and Klang Valley, Malaysia. DNA extraction was performed using the Qiagen DNA mini kit, and the 16S rRNA bacterial gene was amplified and sequenced using the Illumina MiSeq platform. Sequencing reads were processed using DADA2, and the alpha and beta diversity of the bacterial community was assessed. Significantly differentiated taxa were identified using LEfSe analysis, while differentially expressed pathways were identified using MaAsLin2. Results A significant compositional change (beta diversity) was detected between the two groups (PERMANOVA P < 0.05). Specifically, the levels of phylum Firmicutes and genus Streptococcus were elevated in smokers, whereas phylum Proteobacteria and genus Haemophilus were depleted compared to non-smokers. At the species level, Streptococcus oralis, Streptococcus salivarius, and Streptococcus gingivalis were enriched in smokers. We observed significant differences in the abundance of thirty-seven microbial metabolic pathways between waterpipe smokers and non-smokers. The microbial pathways enriched in smokers were those implicated in polymer degradation and amino acid metabolism. Conclusion The taxonomic and metabolic profile of the salivary microbiome in waterpipe smokers compared to healthy controls exhibited a paradigm shift, thus, implying an alteration in the homeostatic balance of the oral cavity posing unique challenges for oral health.
Collapse
Affiliation(s)
| | - Chun Wie Chong
- School of Pharmacy, Monash University, Kuala Lumpur, Malaysia
| | - Lim Shu Yong
- School of Pharmacy, Monash University, Kuala Lumpur, Malaysia
- Monash University Malaysia Genomics Facility, School of Science, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Ling Fong Yoke
- School of Pharmacy, Monash University, Kuala Lumpur, Malaysia
- Monash University Malaysia Genomics Facility, School of Science, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Divya Gopinath
- College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
2
|
Jeong J, Ahn K, Mun S, Yun K, Kim YT, Jung W, Lee KE, Kim MY, Ahn Y, Han K. Understanding the bacterial compositional network associations between oral and gut microbiome within healthy Koreans. J Oral Microbiol 2023; 15:2186591. [PMID: 36891192 PMCID: PMC9987756 DOI: 10.1080/20002297.2023.2186591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Oral microbial ecosystem could influence intestinal diseases, but there have been insufficient studies demonstrating the association of microbial composition between the oral cavity and the intestinal system. Thus, we aimed to investigate the compositional network within the oral microbiome related to gut enterotype from saliva and stool samples collected from 112 healthy Korean subjects. Here, we performed bacterial 16S amplicon sequencing from clinical samples. Then, we determined oral microbiome type related to individual's gut enterotype for healthy Korean. The co-occurrence analysis was performed to interactivity prediction of microbiome within saliva samples. As a result, it could be classified into two Korean oral microbiome types (KO) and four oral-gut-associated microbiome types (KOGA) according to distribution and significant differences of oral microflora. The co-occurrence analysis showed various bacterial compositional networks linked around Streptococcus and Haemophilus within healthy subjects. The present study was first approach in healthy Koreans to identify the oral microbiome types related to the gut microbiome and investigate their characteristics. Hence, we suggest that our results could be potential healthy control data for identifying differences in microbial composition between healthy people and oral disease patients and studying microbial association with the gut microbial environment (oral-gut microbiome axis).
Collapse
Affiliation(s)
- Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Yongin, Republic of Korea
| | - Kung Ahn
- Department of Human microbiome research HuNbiome Co. Ltd, R&D Center, Seoul, Republic of Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea.,Center for Bio‑Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Kyeongeui Yun
- Department of Human microbiome research HuNbiome Co. Ltd, R&D Center, Seoul, Republic of Korea.,Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea
| | - Yeon-Tae Kim
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung Eun Lee
- Department of Oral Medicine, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Yongju Ahn
- Department of Human microbiome research HuNbiome Co. Ltd, R&D Center, Seoul, Republic of Korea
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin, Republic of Korea.,Department of Human microbiome research HuNbiome Co. Ltd, R&D Center, Seoul, Republic of Korea.,Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea.,Center for Bio‑Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|