1
|
Schnizlein MK, Dubey AA, Fiebig A, Crosson S. Genetic- and culture-based tools for studying Bacteroides fragilis. Microbiol Resour Announc 2025; 14:e0000625. [PMID: 40130927 PMCID: PMC12060699 DOI: 10.1128/mra.00006-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
The relatively limited availability of genetic tools has hampered mechanistic studies of Bacteroides fragilis, an opportunistic anaerobe that constitutes 1%-5% of the gut microbiota in healthy humans. Here we describe novel vectors for B. fragilis gene deletion and expression as well as a semi-defined media for cultivation of B. fragilis str. P207.
Collapse
Affiliation(s)
- Matthew K. Schnizlein
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Abhishek A. Dubey
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Thuringia, Germany
| | - Aretha Fiebig
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Tothero GK, Hoover RL, Farag IF, Kaplan DI, Weisenhorn P, Emerson D, Chan CS. Leptothrix ochracea genomes reveal potential for mixotrophic growth on Fe(II) and organic carbon. Appl Environ Microbiol 2024; 90:e0059924. [PMID: 39133000 PMCID: PMC11412304 DOI: 10.1128/aem.00599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Leptothrix ochracea creates distinctive iron-mineralized mats that carpet streams and wetlands. Easily recognized by its iron-mineralized sheaths, L. ochracea was one of the first microorganisms described in the 1800s. Yet it has never been isolated and does not have a complete genome sequence available, so key questions about its physiology remain unresolved. It is debated whether iron oxidation can be used for energy or growth and if L. ochracea is an autotroph, heterotroph, or mixotroph. To address these issues, we sampled L. ochracea-rich mats from three of its typical environments (a stream, wetlands, and a drainage channel) and reconstructed nine high-quality genomes of L. ochracea from metagenomes. These genomes contain iron oxidase genes cyc2 and mtoA, showing that L. ochracea has the potential to conserve energy from iron oxidation. Sox genes confer potential to oxidize sulfur for energy. There are genes for both carbon fixation (RuBisCO) and utilization of sugars and organic acids (acetate, lactate, and formate). In silico stoichiometric metabolic models further demonstrated the potential for growth using sugars and organic acids. Metatranscriptomes showed a high expression of genes for iron oxidation; aerobic respiration; and utilization of lactate, acetate, and sugars, as well as RuBisCO, supporting mixotrophic growth in the environment. In summary, our results suggest that L. ochracea has substantial metabolic flexibility. It is adapted to iron-rich, organic carbon-containing wetland niches, where it can thrive as a mixotrophic iron oxidizer by utilizing both iron oxidation and organics for energy generation and both inorganic and organic carbon for cell and sheath production. IMPORTANCE Winogradsky's observations of L. ochracea led him to propose autotrophic iron oxidation as a new microbial metabolism, following his work on autotrophic sulfur-oxidizers. While much culture-based research has ensued, isolation proved elusive, so most work on L. ochracea has been based in the environment and in microcosms. Meanwhile, the autotrophic Gallionella became the model for freshwater microbial iron oxidation, while heterotrophic and mixotrophic iron oxidation is not well-studied. Ecological studies have shown that Leptothrix overtakes Gallionella when dissolved organic carbon content increases, demonstrating distinct niches. This study presents the first near-complete genomes of L. ochracea, which share some features with autotrophic iron oxidizers, while also incorporating heterotrophic metabolisms. These genome, metabolic modeling, and transcriptome results give us a detailed metabolic picture of how the organism may combine lithoautotrophy with organoheterotrophy to promote Fe oxidation and C cycling and drive many biogeochemical processes resulting from microbial growth and iron oxyhydroxide formation in wetlands.
Collapse
Affiliation(s)
- Gracee K. Tothero
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
| | - Rene L. Hoover
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
| | - Ibrahim F. Farag
- School of Marine
Science and Policy, University of
Delaware, Newark,
Delaware, USA
| | - Daniel I. Kaplan
- Savannah River Ecology
Laboratory, University of Georgia,
Aiken, South Carolina,
USA
| | | | - David Emerson
- Bigelow Laboratory for
Ocean Sciences, East
Boothbay, Maine, USA
| | - Clara S. Chan
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
- School of Marine
Science and Policy, University of
Delaware, Newark,
Delaware, USA
| |
Collapse
|
3
|
Song HS, Lee NR, Kessell AK, McCullough HC, Park SY, Zhou K, Lee DY. Kinetics-based inference of environment-dependent microbial interactions and their dynamic variation. mSystems 2024; 9:e0130523. [PMID: 38682902 PMCID: PMC11097648 DOI: 10.1128/msystems.01305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Microbial communities in nature are dynamically evolving as member species change their interactions subject to environmental variations. Accounting for such context-dependent dynamic variations in interspecies interactions is critical for predictive ecological modeling. In the absence of generalizable theoretical foundations, we lack a fundamental understanding of how microbial interactions are driven by environmental factors, significantly limiting our capability to predict and engineer community dynamics and function. To address this issue, we propose a novel theoretical framework that allows us to represent interspecies interactions as an explicit function of environmental variables (such as substrate concentrations) by combining growth kinetics and a generalized Lotka-Volterra model. A synergistic integration of these two complementary models leads to the prediction of alterations in interspecies interactions as the outcome of dynamic balances between positive and negative influences of microbial species in mixed relationships. The effectiveness of our method was experimentally demonstrated using a synthetic consortium of two Escherichia coli mutants that are metabolically dependent (due to an inability to synthesize essential amino acids) but competitively grow on a shared substrate. The analysis of the E. coli binary consortium using our model not only showed how interactions between the two amino acid auxotrophic mutants are controlled by the dynamic shifts in limiting substrates but also enabled quantifying previously uncharacterizable complex aspects of microbial interactions, such as asymmetry in interactions. Our approach can be extended to other ecological systems to model their environment-dependent interspecies interactions from growth kinetics.IMPORTANCEModeling environment-controlled interspecies interactions through separate identification of positive and negative influences of microbes in mixed relationships is a new capability that can significantly improve our ability to understand, predict, and engineer the complex dynamics of microbial communities. Moreover, the prediction of microbial interactions as a function of environmental variables can serve as valuable benchmark data to validate modeling and network inference tools in microbial ecology, the development of which has often been impeded due to the lack of ground truth information on interactions. While demonstrated against microbial data, the theory developed in this work is readily applicable to general community ecology to predict interactions among macroorganisms, such as plants and animals, as well as microorganisms.
Collapse
Affiliation(s)
- Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Na-Rae Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, South Korea
| | - Aimee K. Kessell
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh C. McCullough
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, South Korea
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, South Korea
| |
Collapse
|
4
|
Poothong S, Tanasupawat S, Chanpongsang S, Kingkaew E, Nuengjamnong C. Anaerobic flora, Selenomonas ruminis sp. nov., and the bacteriocinogenic Ligilactobacillus salivarius strain MP3 from crossbred-lactating goats. Sci Rep 2024; 14:4838. [PMID: 38418870 PMCID: PMC10901824 DOI: 10.1038/s41598-024-54686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
This study aimed to examine the distribution of anaerobic bacteria in the rumen fluid of Thai crossbred goats and to screen potential probiotic strains capable of producing antimicrobial compounds and inhibiting bacteria that cause milk fat depression. Thirty-four strains of bacteria from the rumen fluid were divided into 13 groups within 12 genera based on 16S rRNA gene sequences. The RF1-5 and RF5-12 were identified as Streptococcus luteliensis and Bacillus licheniformis, respectively, and demonstrated non-ropy exopolysaccharide. Furthermore, mPRGC5T was closely related to Selenomonas caprae JCM 33725 T (97.8% similarity) based on 16S rRNA gene sequences. It exhibited low average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values with related type strains ranging from 84.9 to 86.0%, 21.3 to 21.8%, and 73.8 to 76.1%, respectively. The genotypic and phenotypic characteristics of mPRGC5T strongly support this strain as a new species of the genus Selenomonas for which the name Selenomonas ruminis mPRGC5T was proposed. The type strain is mPRGC5T (= JCM 33724 T = KCTC 25177 T). Ligilactobacillus salivarius MP3 showed antibacterial activity against Cutibacterium acnes subsp. acnes DSM 1897 T and Kocuria rhizophila MIII. The enterolysin A cluster gene was identified in its genome. The auto-aggregation of L. salivarius MP3 was 93.6 ± 0.2%. Additionally, co-aggregation of L. salivarius MP3 with C. acnes DSM 1897 T and K. rhizophila MIII had 92.2 ± 3.4% and 87.3 ± 4.5%, respectively. The adhesion capacity of strain MP3 was 76.11 ± 2.2%. Probiogenomic analysis revealed that L. salivarius MP3 was nonhazardous to animal supplementation and included acid- and bile-tolerant ability. However, strain MP3 contained three antibiotic resistance genes. Thus, the supplementation of L. salivarius MP3 could increase the milk fat content by suppressing C. acnes DSM 1897 T with antibiotic resistance gene horizontal transfer awareness.
Collapse
Affiliation(s)
- Saranporn Poothong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Somchai Chanpongsang
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Engkarat Kingkaew
- Department of Biology, School of Sciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chackrit Nuengjamnong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Sidebottom AM. A Brief History of Microbial Study and Techniques for Exploring the Gastrointestinal Microbiome. Clin Colon Rectal Surg 2023; 36:98-104. [PMID: 36844714 PMCID: PMC9946713 DOI: 10.1055/s-0042-1760678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past 20 years, the study of microbial communities has benefited from simultaneous advancements across several fields resulting in a high-resolution view of human consortia. Although the first bacterium was described in the mid-1600s, the interest in community membership and function has not been a focus or feasible until recent decades. With strategies such as shotgun sequencing, microbes can be taxonomically profiled without culturing and their unique variants defined and compared across phenotypes. Approaches such as metatranscriptomics, metaproteomics, and metabolomics can define the current functional state of a population through the identification of bioactive compounds and significant pathways. Prior to sample collection in microbiome-based studies it is critical to evaluate the requirements of downstream analyses to ensure accurate processing and storage for generation of high data quality. A common pipeline for the analysis of human samples includes approval of collection protocols and method finalization, patient sample collection, sample processing, data analysis, and visualization. Human-based microbiome studies are inherently challenging but with the application of complementary multi-omic strategies there is an unbounded potential for discovery.
Collapse
|
6
|
Draft Genome Sequence of a Polyhydroxyalkanoate-Producing Bacillus cereus Strain Isolated from Nuevo Leon State, Mexico. Microbiol Resour Announc 2022; 11:e0026922. [PMID: 35652668 PMCID: PMC9302066 DOI: 10.1128/mra.00269-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are microbially produced biopolymers which are biodegradable and biocompatible. These compounds produced by microorganisms have been described as a potent alternative to synthetic plastics, which are often recalcitrant. Here, we report the draft genome sequence of a PHA-producing Bacillus cereus isolated in our laboratory.
Collapse
|