1
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
2
|
Piga I, Pagni F, Magni F, Smith A. Cytological Cytospin Preparation for the Spatial Proteomics Analysis of Thyroid Nodules Using MALDI-MSI. Methods Mol Biol 2023; 2688:95-105. [PMID: 37410287 DOI: 10.1007/978-1-0716-3319-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The application of innovative spatial omics approaches in the context of cytological specimens may open new frontiers for their diagnostic assessment. In particular, spatial proteomics using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) represents one of the most promising avenues, owing to its capability to map the distribution of hundreds of proteins within a complex cytological background in a multiplexed and relatively high-throughput manner. This approach may be particularly beneficial in the heterogeneous context of thyroid tumors where certain cells may not present clear-cut malignant morphology upon fine-needle aspiration biopsy, highlighting the necessity for additional molecular tools which are able to improve their diagnostic performance.This chapter aims to provide a detailed overview of a cytospin-based preparation workflow that has been optimized to facilitate the reliable spatial proteomics analysis of cytological thyroid specimens using MALDI-MSI, indicating the key aspects which should be considered when handling such samples.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Monza, Italy.
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University of Milan-Bicocca, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Monza, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
3
|
Denti V, Capitoli G, Piga I, Clerici F, Pagani L, Criscuolo L, Bindi G, Principi L, Chinello C, Paglia G, Magni F, Smith A. Spatial Multiomics of Lipids, N-Glycans, and Tryptic Peptides on a Single FFPE Tissue Section. J Proteome Res 2022; 21:2798-2809. [PMID: 36259755 PMCID: PMC9639202 DOI: 10.1021/acs.jproteome.2c00601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Mass spectrometry
imaging (MSI) is an emerging technology
that
is capable of mapping various biomolecules within their native spatial
context, and performing spatial multiomics on formalin-fixed paraffin-embedded
(FFPE) tissues may further increase the molecular characterization
of pathological states. Here we present a novel workflow which enables
the sequential MSI of lipids, N-glycans, and tryptic peptides on a
single FFPE tissue section and highlight the enhanced molecular characterization
that is offered by combining the multiple spatial omics data sets.
In murine brain and clear cell renal cell carcinoma (ccRCC) tissue,
the three molecular levels provided complementary information and
characterized different histological regions. Moreover, when the spatial
omics data was integrated, the different histopathological regions
of the ccRCC tissue could be better discriminated with respect to
the imaging data set of any single omics class. Taken together, these
promising findings demonstrate the capability to more comprehensively
map the molecular complexity within pathological tissue.
Collapse
Affiliation(s)
- Vanna Denti
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Francesca Clerici
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Lisa Pagani
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Lucrezia Criscuolo
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Greta Bindi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Lucrezia Principi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giuseppe Paglia
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| |
Collapse
|
4
|
Shedlock CJ, Stumpo KA. Data parsing in mass spectrometry imaging using R Studio and Cardinal: A tutorial. J Mass Spectrom Adv Clin Lab 2022; 23:58-70. [PMID: 35072143 PMCID: PMC8762469 DOI: 10.1016/j.jmsacl.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry imaging (MSI) has emerged as a rapidly expanding field in the MS community. The analysis of large spectral data is further complicated by the added spatial dimension of MSI. A plethora of resources exist for expert users to begin parsing MSI data in R, but there is a critical lack of guidance for absolute beginners. This tutorial is designed to serve as a one-stop guide to start using R with MSI data and describe the possibilities that data science can bring to MSI analysis.
Collapse
Key Words
- AuNP, gold nanoparticle
- Cardinal
- DESI, desorption electrospray ioniziation
- Data validation
- IACUC, Institutional Animal Care and Use Committee
- ITO, indium tin oxide
- MSI, mass spectrometry imaging
- Mass spectrometry imaging
- PCA, principal component analysis
- R Studio
- RAM, random access memory
- RMS, root mean squared
- SNR, signal to noise ratio
- SSC, spatial shrunken centroid
- SSD, solid state drive
- TIC, total ion current
Collapse
Affiliation(s)
- Cameron J. Shedlock
- Department of Chemistry, University of Scranton, Scranton, PA 18510, United States
| | - Katherine A. Stumpo
- Department of Chemistry, University of Scranton, Scranton, PA 18510, United States
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Bruker Scientific, Billerica, MA 01821, United States
| |
Collapse
|