1
|
Liu Y, Ai H. Circular RNAs in gynecological cancer: From molecular mechanisms to clinical applications (Review). Oncol Lett 2025; 29:291. [PMID: 40271005 PMCID: PMC12015383 DOI: 10.3892/ol.2025.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/14/2025] [Indexed: 04/25/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as promising biomarkers and therapeutic targets in gynecological cancer. The present review explored developments in circRNA research in ovarian, endometrial and cervical cancer. circRNA biogenesis, functions and roles in cancer pathogenesis have been discussed, focusing on their potential as diagnostic and prognostic markers. Furthermore, circRNAs mechanisms of action, including miRNA sponging, protein scaffolding and peptide encoding were examined, highlighting specific circRNAs implicated in each cancer type and their clinical significance. The unique properties of circRNAs, such as stability and tissue-specific expression, make them ideal candidates for biomarker development. By synthesizing the currently available literature and identifying future research directions, the present review underscored circRNAs potential to improve gynecological cancer management through novel diagnostic tools, prognostic markers and targeted therapies.
Collapse
Affiliation(s)
- Ying Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Hao Ai
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
2
|
Zhang Y, Zhang X, Tang Q, Li L, Jiang T, Fang Y, Zhang H, Zhai J, Ren G, Zheng B. A repertoire of intronic lariat RNAs reveals tissue-specific regulation and target mimicry potential in plants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1280-1291. [PMID: 38489006 DOI: 10.1007/s11427-023-2466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 03/17/2024]
Abstract
Lariat RNA is concomitantly produced by excised intron during RNA splicing, which is usually debranched by DBR1, an RNA debranching enzyme. However, increasing evidence showed that some lariat RNA could escape debranching. Little is known about how and why these lariat RNAs could be retained. By comparing the atlas of lariat RNAs between the non-dividing cell (mature pollen) and three actively dividing tissues (young shoot apex, young seeds, and young roots), we identified hundreds to thousands of lariat RNA naturally retained in each tissue, and the incidence of lariat RNA retention is much less in shoot apex while much more in pollen. Many lariat RNAs derived from the same intron or different lariat RNAs from the same pre-mRNA could be retained in one tissue while degraded in the other tissues. By deciphering lariat RNA sequences, we identified an AG-rich (RAAAAVAAAR) motif and a UC-rich (UCUCUYUCUC) motif for pollen-specific and the other three tissues-retained lariat RNAs, respectively. Reconstitution of the pollen-specific AG-rich motif indeed enhanced lariat RNA retention in plants. Biologically, hundreds of lariat RNAs harbored miRNA binding sites, and dual-luciferase reporter assay showed that these natural lariat RNAs had the potential to protect expression of miRNA target genes. Collectively, our results uncover that selective retention of lariat RNA is an actively regulatory process, and provide new insights into understanding how lariat RNA metabolism may impact miRNA activity.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaotuo Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qi Tang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Li
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ting Jiang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yixiao Fang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|