1
|
Wu Q, Zheng Q, Yuan L, Gao D, Hu Y, Jiang X, Zhai Q, Liu M, Xu L, Xu H, Ye J, Zhang F. Repression of YEATS2 induces cellular senescence in hepatocellular carcinoma and inhibits tumor growth. Cell Cycle 2024; 23:478-494. [PMID: 38619971 PMCID: PMC11174065 DOI: 10.1080/15384101.2024.2342714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the third leading cause of cancer-related fatalities globally. In this study, we observed a significant increase in the expression level of the YEATS2 gene in HCC patients, and it is negatively correlated with the patients' survival rate. While we have previously identified the association between YEATS2 and the survival of pancreatic cancer cells, the regulatory mechanisms and significance in HCC are still to be fully elucidated. Our study shows that knockdown (KD) of YEATS2 expression leads to DNA damage, which in turn results in an upregulation of γ-H2A.X expression and activation of the canonical senescence-related pathway p53/p21Cip1. Moreover, our transcriptomic analysis reveals that YEATS2 KD cells can enhance the expression of p21Cip1 via the c-Myc/miR-93-5p pathway, consequently fostering the senescence of HCC cells. The initiation of cellular senescence through dual-channel activation suggests that YEATS2 plays a pivotal regulatory role in the process of cell proliferation. Ultimately, our in vivo research utilizing a nude mouse tumor model revealed a notable decrease in both tumor volume and weight after the suppression of YEATS2 expression. This phenomenon is likely attributable to the attenuation of proliferative cell activity, coupled with a concurrent augmentation in the population of natural killer (NK) cells. In summary, our research results have supplemented the understanding of the regulatory mechanisms of HCC cell proliferation and indicated that targeting YEATS2 may potentially inhibit liver tumor growth.
Collapse
Affiliation(s)
- Qi Wu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Quan Zheng
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Dandan Gao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yabing Hu
- School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinqing Jiang
- The Joint Innovation Center for Engineering in Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaocheng Zhai
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Ming Liu
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Lifeng Xu
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Heng Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Feng Zhang
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| |
Collapse
|
2
|
Wu F, Chen X, Du Z, Chen Y, Tong D, Zhang J, Yang Y, Ma G, Du A. Proteomic differences between extracellular vesicles and extracellular vesicle-depleted excretory/secretory products of barber's pole worm. Parasit Vectors 2024; 17:17. [PMID: 38217036 PMCID: PMC10785392 DOI: 10.1186/s13071-023-06092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Components of excretory/secretory products (ESPs) of helminths have been proposed as vaccine targets and shown to play a role in modulating host immune responses for decades. Such research interest is further increased by the discovery of extracellular vesicles (EVs) in the ESPs of parasitic worms. Although efforts have been made to reveal the cargos of EVs, little is known about the proteomic differences between EVs and canonical ESPs released by parasitic worms from animals. METHODS The total ESPs of Haemonchus contortus (barber's pole worm) were obtained by short-term in vitro culturing of young adult worms, and small EVs were isolated from ESPs using an ultracentrifugation method. Data-dependent acquisition (DDA) label-free Nano-LC-MS/MS was used to quantify the proteomic difference between small EVs and EV-depleted ESPs of H. contortus. Functional annotation and enrichment of the differential proteins were performed regarding cellular components, molecular functions, pathways, and/or biological processes. RESULTS A total of 1697 proteins were identified in small EVs and EV-depleted ESPs of H. contortus adult worms, with 706 unique proteins detected in the former and 597 unique proteins in the latter. It was revealed that proteins in small EVs are dominantly cytoplasmic, whereas proteins in EV-depleted ESPs are mainly extracellular; canonical ESPs such as proteases and small GTPases were abundantly detected in small EVs, and SCP/TAP-, DUF-, and GLOBIN domain-containing proteins were mainly found in EV-depleted ESPs. Compared with well-characterised proteins in small EVs, about 50% of the proteins detected in EV-depleted ESPs were poorly characterised. CONCLUSIONS There are remarkable differences between small EVs and EV-depleted ESPs of H. contortus in terms of protein composition. Immune modulatory effects caused by nematode ESPs are possibly contributed mainly by the proteins in small EVs.
Collapse
Affiliation(s)
- Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yanqiong Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Danni Tong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jingju Zhang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Kronenberg PA, Reinehr M, Eichenberger RM, Hasler S, Laurimäe T, Weber A, Deibel A, Müllhaupt B, Gottstein B, Müller N, Hemphill A, Deplazes P. Monoclonal antibody-based localization of major diagnostic antigens in metacestode tissue, excretory/secretory products, and extracellular vesicles of Echinococcus species. Front Cell Infect Microbiol 2023; 13:1162530. [PMID: 37009502 PMCID: PMC10061086 DOI: 10.3389/fcimb.2023.1162530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Alveolar (AE) and cystic echinococcosis (CE) are severe parasitic zoonoses caused by the larval stages of Echinococcus multilocularis and E. granulosus sensu lato, respectively. A panel of 7 monoclonal antibodies (mAbs) was selected against major diagnostic epitopes of both species. The binding capacity of the mAbs to Echinococcus spp. excretory/secretory products (ESP) was analyzed by sandwich-ELISA, where mAb Em2G11 and mAb EmG3 detected in vitro extravesicular ESP of both E. multilocularis and E. granulosus s.s. These findings were subsequently confirmed by the detection of circulating ESP in a subset of serum samples from infected hosts including humans. Extracellular vesicles (EVs) were purified, and the binding to mAbs was analyzed by sandwich-ELISA. Transmission electron microscopy (TEM) was used to confirm the binding of mAb EmG3 to EVs from intravesicular fluid of Echinococcus spp. vesicles. The specificity of the mAbs in ELISA corresponded to the immunohistochemical staining (IHC-S) patterns performed on human AE and CE liver sections. Antigenic small particles designated as ''spems'' for E. multilocularis and ''spegs'' for E. granulosus s.l. were stained by the mAb EmG3IgM, mAb EmG3IgG1, mAb AgB, and mAb 2B2, while mAb Em2G11 reacted with spems and mAb Eg2 with spegs only. The laminated layer (LL) of both species was strongly visualized by using mAb EmG3IgM, mAb EmG3IgG1, mAb AgB, and mAb 2B2. The LL was specifically stained by mAb Em2G11 in E. multilocularis and by mAb Eg2 in E. granulosus s.l. In the germinal layer (GL), including the protoscoleces, a wide staining pattern with all structures of both species was observed with mAb EmG3IgG1, mAb EmG3IgM, mAb AgB, mAb 2B2, and mAb Em18. In the GL and protoscoleces, the mAb Eg2 displayed a strong E. granulosus s.l. specific binding, while mAb Em2G11 exhibited a weak granular E. multilocularis specific reaction. The most notable staining pattern in IHC-S was found with mAb Em18, which solely bound to the GL and protoscoleces of Echinococcus species and potentially to primary cells. To conclude, mAbs represent valuable tools for the visualization of major antigens in the most important Echinococcus species, as well as providing insights into parasite-host interactions and pathogenesis.
Collapse
Affiliation(s)
- Philipp A. Kronenberg
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Marc Eichenberger
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Microbiology and Molecular Biology, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich University of Applied Sciences’ (ZHAW), Wädenswil, Switzerland
| | - Sina Hasler
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Teivi Laurimäe
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ansgar Deibel
- Department of Gastroenterology and Hepatology and Swiss HPB and Transplant Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Beat Müllhaupt
- Department of Gastroenterology and Hepatology and Swiss HPB and Transplant Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bruno Gottstein
- Institute for Infectious Diseases, Medical Faculty, University of Bern, Bern, Switzerland
| | - Norbert Müller
- Institute for Infectious Diseases, Medical Faculty, University of Bern, Bern, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Department of Gastroenterology and Hepatology and Swiss HPB and Transplant Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Exosomes as a New Delivery Vehicle in Inflammatory Bowel Disease. Pharmaceutics 2021; 13:pharmaceutics13101644. [PMID: 34683937 PMCID: PMC8539337 DOI: 10.3390/pharmaceutics13101644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a type of chronic relapsing inflammatory disease. The pathogenesis of IBD is still unclear, which may involve environmental factors, genetic factors, intestinal microbiota disorder, and abnormal immune responses. Exosomes (30–150 nm) are found in various body fluids, including blood, saliva, urine, and cerebrospinal fluid. Exosomes mediate intercellular communication and regulate cell biological activity by carrying non-coding RNAs, proteins, and lipids. There is evidence that exosomes are involved in the pathogenesis of IBD. In view of the important roles of exosomes in the pathogenesis of IBD, this work systematically reviews the latest research progress of exosomes in IBD, especially the roles of exosomes as non-coding RNA delivery systems in the pathogenesis of IBD, including a disordered immune response, barrier function, and intestinal microbiota. The review will help to clarify the pathogenesis of IBD and explore new diagnostic markers and therapeutic targets for patients with IBD.
Collapse
|