1
|
Lin S, Tang L, Xu N. Research progress and strategy of FGF21 for skin wound healing. Front Med (Lausanne) 2025; 12:1510691. [PMID: 40231082 PMCID: PMC11994443 DOI: 10.3389/fmed.2025.1510691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Fibroblast Growth Factor 21 (FGF21), a pivotal member of the fibroblast growth factor family, exhibits multifaceted biological functions, including the modulation of pro-inflammatory cytokines and metabolic regulation. Recent research has revealed that in impaired skin tissues, FGF21 and its receptors are upregulated and play a significant role in accelerating the wound healing process. However, the clinical application of FGF21 is severely limited by its short in vivo half-life: this factor is often degraded by enzymes before it can exert its therapeutic effects. To address this limitation, the transdermal drug delivery system (TDDS) has emerged as an innovative approach that enables sustained drug release, significantly prolonging the therapeutic duration. Leveraging genetic recombination technology, research teams have ingeniously fused FGF21 with cell-penetrating peptides (CPPs) to construct recombinant FGF21 complexes. These novel conjugates can efficiently penetrate the epidermal barrier and achieve sustained and stable pharmacological activity through TDDS. This review systematically analyzes the potential signaling pathways by which FGF21 accelerates skin wound repair, summarizes the latest advancements in TDDS technology, explores the therapeutic potential of FGF21, and evaluates the efficacy of CPP fusion tags. The manuscript not only proposes an innovative paradigm for the application of FGF21 in skin injury treatment but also provides new insights into its use in transdermal delivery, marking a significant step toward overcoming existing clinical therapeutic challenges. From a clinical medical perspective, this innovative delivery system holds promise for addressing the bioavailability issues of traditional FGF21 therapies, offering new strategies for the clinical treatment of metabolism-related diseases and wound healing. With further research, this technology holds vast potential for clinical applications in hard-to-heal wounds such as diabetic foot ulcers and burns.
Collapse
Affiliation(s)
- Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lu Tang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Okuda A, Sugai K, Okuda S. Inhibition of enhanced green fluorescent protein cytosolic delivery mediated by modified cell-penetrating peptide due to high overexpression of Caveolin-1. Biochem Biophys Res Commun 2024; 733:150586. [PMID: 39197200 DOI: 10.1016/j.bbrc.2024.150586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
The modified cell-penetrating peptide Pas2r12 can deliver antibodies (IgG, 150 kDa) and enhanced green fluorescent protein (EGFP1, 27 kDa) into the cytosol through caveolae-dependent endocytosis. In this study, we determined the effect of Caveolin-1 overexpression on the cytosolic delivery of EGFP by Pas2r12. Three types of Caveolin-1 overexpressing strains were isolated, including Cav1L (low), Cav1M (medium), and Cav1H (high), using HEK293 as the parent cell line. We found that the number of caveolae on the surface of the Caveolin-1-overexpressing strains was similar to that of HEK293. We examined the cytosolic delivery rate of EGFP by Pas2r12. In the Cav1L and Cav1M cells, there was little change compared with HEK293; however, in Cav1H, the rate was significantly decreased. Moreover, the amount of EGFP uptake into the cells (total intracellular EGFP) showed an increasing trend in Cav1H compared with HEK293. These results indicate that in Cav1H, the amount of EGFP uptake into the cells increases, whereas the cytosolic delivery rate of EGFP decreases. This suggests that high overexpression of Caveolin-1 inhibits the transition of EGFP from endosomes to the cytosol.
Collapse
Affiliation(s)
- Akiko Okuda
- Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan.
| | - Keito Sugai
- Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan
| | - Shujiro Okuda
- Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
3
|
Wang H, Chen M, Zhang X, Xie S, Qin J, Li J. Peptide-based PROTACs: Current Challenges and Future Perspectives. Curr Med Chem 2024; 31:208-222. [PMID: 36718000 DOI: 10.2174/0929867330666230130121822] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 02/01/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) are an attractive means to target previously undruggable or drug-resistant mutant proteins. While small molecule-based PROTACs are stable and can cross cell membranes, there is limited availability of suitable small molecule warheads capable of recruiting proteins to an E3 ubiquitin ligase for degradation. With advances in structural biology and in silico protein structure prediction, it is now becoming easier to define highly selective peptides suitable for PROTAC design. As a result, peptide-based PROTACs are becoming a feasible proposition for targeting previously "undruggable" proteins not amenable to small molecule inhibition. In this review, we summarize recent progress in the design and application of peptide-based PROTACs as well as several practical approaches for obtaining candidate peptides for PROTACs. We also discuss the major hurdles preventing the translation of peptide-based PROTACs from bench to bedside, such as their delivery and bioavailability, with the aim of stimulating discussion about how best to accelerate the clinical development of peptide- based PROTACs in the near future.
Collapse
Affiliation(s)
- Huidan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiaoyuan Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Songbo Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Jingrui Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
4
|
Laniel A, Marouseau É, Nguyen DT, Froehlich U, McCartney C, Boudreault PL, Lavoie C. Characterization of PGua 4, a Guanidinium-Rich Peptoid that Delivers IgGs to the Cytosol via Macropinocytosis. Mol Pharm 2023; 20:1577-1590. [PMID: 36781165 PMCID: PMC9997486 DOI: 10.1021/acs.molpharmaceut.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
To investigate the structure-cellular penetration relationship of guanidinium-rich transporters (GRTs), we previously designed PGua4, a five-amino acid peptoid containing a conformationally restricted pattern of eight guanidines, which showed high cell-penetrating abilities and low cell toxicity. Herein, we characterized the cellular uptake selectivity, internalization pathway, and intracellular distribution of PGua4, as well as its capacity to deliver cargo. PGua4 exhibits higher penetration efficiency in HeLa cells than in six other cell lines (A549, Caco-2, fibroblast, HEK293, Mia-PaCa2, and MCF7) and is mainly internalized by clathrin-mediated endocytosis and macropinocytosis. Confocal microscopy showed that it remained trapped in endosomes at low concentrations but induced pH-dependent endosomal membrane destabilization at concentrations ≥10 μM, allowing its diffusion into the cytoplasm. Importantly, PGua4 significantly enhanced macropinocytosis and the cellular uptake and cytosolic delivery of large IgGs following noncovalent complexation. Therefore, in addition to its peptoid nature conferring high resistance to proteolysis, PGua4 presents characteristics of a promising tool for IgG delivery and therapeutic applications.
Collapse
Affiliation(s)
- Andréanne Laniel
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Étienne Marouseau
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Duc Tai Nguyen
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ulrike Froehlich
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claire McCartney
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Christine Lavoie
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
5
|
Hao M, Zhang L, Chen P. Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides. Int J Mol Sci 2022; 23:ijms23169038. [PMID: 36012300 PMCID: PMC9409441 DOI: 10.3390/ijms23169038] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been discovered to deliver chemical drugs, nucleic acids, and macromolecules to permeate cell membranes, creating a novel route for exogenous substances to enter cells. Up until now, various sequence structures and fundamental action mechanisms of CPPs have been established. Among them, arginine-rich peptides with unique cell penetration properties have attracted substantial scientific attention. Due to the positively charged essential amino acids of the arginine-rich peptides, they can interact with negatively charged drug molecules and cell membranes through non-covalent interaction, including electrostatic interactions. Significantly, the sequence design and the penetrating mechanisms are critical. In this brief synopsis, we summarize the transmembrane processes and mechanisms of arginine-rich peptides; and outline the relationship between the function of arginine-rich peptides and the number of arginine residues, arginine optical isomers, primary sequence, secondary and ternary structures, etc. Taking advantage of the penetration ability, biomedical applications of arginine-rich peptides have been refreshed, including drug/RNA delivery systems, biosensors, and blood-brain barrier (BBB) penetration. Understanding the membrane internalization mechanisms and design strategies of CPPs will expand their potential applications in clinical trials.
Collapse
Affiliation(s)
- Minglu Hao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| | - Pu Chen
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| |
Collapse
|
6
|
Liu Y, Zhao Z, Li M. Overcoming the cellular barriers and beyond: Recent progress on cell penetrating peptide modified nanomedicine in combating physiological and pathological barriers. Asian J Pharm Sci 2022; 17:523-543. [PMID: 36105313 PMCID: PMC9458999 DOI: 10.1016/j.ajps.2022.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
The complex physiological and pathological conditions form barriers against efficient drug delivery. Cell penetrating peptides (CPPs), a class of short peptides which translocate drugs across cell membranes with various mechanisms, provide feasible solutions for efficient delivery of biologically active agents to circumvent biological barriers. After years of development, the function of CPPs is beyond cell penetrating. Multifunctional CPPs with bioactivity or active targeting capacity have been designed and successfully utilized in delivery of various cargoes against tumor, myocardial ischemia, ocular posterior segment disorders, etc. In this review, we summarize recent progress in CPP-functionalized nano-drug delivery systems to overcome the physiological and pathological barriers for the applications in cardiology, ophtalmology, mucus, neurology and cancer, etc. We also highlight the prospect of clinical translation of CPP-functionalized drug delivery systems in these areas.
Collapse
Affiliation(s)
- Yingke Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding authors.
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Corresponding authors.
| |
Collapse
|
7
|
Bio-Membrane Internalization Mechanisms of Arginine-Rich Cell-Penetrating Peptides in Various Species. MEMBRANES 2022; 12:membranes12010088. [PMID: 35054614 PMCID: PMC8778423 DOI: 10.3390/membranes12010088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
Recently, membrane-active peptides or proteins that include antimicrobial peptides (AMPs), cytolytic proteins, and cell-penetrating peptides (CPPs) have attracted attention due to their potential applications in the biomedical field. Among them, CPPs have been regarded as a potent drug/molecules delivery system. Various cargoes, such as DNAs, RNAs, bioactive proteins/peptides, nanoparticles and drugs, can be carried by CPPs and delivered into cells in either covalent or noncovalent manners. Here, we focused on four arginine-rich CPPs and reviewed the mechanisms that these CPPs used for intracellular uptake across cellular plasma membranes. The varying transduction efficiencies of them alone or with cargoes were discussed, and the membrane permeability was also expounded for CPP/cargoes delivery in various species. Direct membrane translocation (penetration) and endocytosis are two principal mechanisms for arginine-rich CPPs mediated cargo delivery. Furthermore, the amino acid sequence is the primary key factor that determines the cellular internalization mechanism. Importantly, the non-cytotoxic nature and the wide applicability make CPPs a trending tool for cellular delivery.
Collapse
|