Steger-Hartmann T, Kreuchwig A, Wang K, Birzele F, Draganov D, Gaudio S, Rothfuss A. Perspectives of data science in preclinical safety assessment.
Drug Discov Today 2023:103642. [PMID:
37244565 DOI:
10.1016/j.drudis.2023.103642]
[Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The data landscape in preclinical safety assessment is fundamentally changing because of not only emerging new data types, such as human systems biology, or real-world data (RWD) from clinical trials, but also technological advancements in data-processing software and analytical tools based on deep learning approaches. The recent developments of data science are illustrated with use cases for the three factors: predictive safety (new in silico tools), insight generation (new data for outstanding questions); and reverse translation (extrapolating from clinical experience to resolve preclinical questions). Further advances in this field can be expected if companies focus on overcoming identified challenges related to a lack of platforms and data silos and assuring appropriate training of data scientists within the preclinical safety teams.
Collapse