1
|
Sulimenko V, Dráberová E, Sládková V, Sulimenko T, Vosecká V, Skalli O, Dráber P. Regulation of microtubule nucleation in glioblastoma cells by ARF GTPase-activating proteins GIT1 and GIT2 and protein kinase C. Cancer Cell Int 2025; 25:125. [PMID: 40176062 PMCID: PMC11963297 DOI: 10.1186/s12935-025-03740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND G protein-coupled receptor kinase-interacting proteins (GITs) function as GTPase-activating proteins (GAPs) for small GTPases of the ADP-ribosylation factor (Arf) family. While GIT proteins (GIT1 and GIT2) regulate both cell migration and microtubule organization, their corresponding regulatory mechanisms in glioblastoma cells remain largely unknown. To further investigate their role in microtubule modulation, we examined the function of GITs in microtubule nucleation and the involvement of protein kinase C (PKC) in this process. METHODS Glioblastoma cell lines with depleted GIT protein levels were generated using shRNA lentiviral vectors. The cellular localization of GITs was visualized by immunofluorescence microscopy, microtubule nucleation was analyzed using time-lapse imaging, and cell migration was assessed through a wound healing assay. Phosphomimetic and non-phosphorylatable variants of GIT2 were prepared by site-directed mutagenesis. Immunoprecipitation, pull-down experiments, and kinase assays in the presence of PKC inhibitors were used to study protein interactions. RESULTS Both GIT1 and GIT2 associate with proteins of the γ-tubulin ring complexes (γTuRCs), the primary microtubule nucleators, and localize to centrosomes. Depletion of GIT2 enhances centrosomal microtubule nucleation and has a more pronounced, yet opposite, effect on this process compared to GIT1. In contrast, the depletion of both GIT1 and GIT2 similarly affects cell migration. The N-terminal ArfGAP domain of GIT2 associates with centrosomes, regulates microtubule nucleation, and is phosphorylated by PKC, which modulates this process. We identified serine 46 (S46) on the ArfGAP domain as a PKC phosphorylation site and demonstrated that phosphorylation of GIT2 at S46 promotes microtubule nucleation. CONCLUSIONS We propose that GIT2 phosphorylation provides a novel regulatory mechanism for microtubule nucleation in glioblastoma cells, contributing to their invasive properties.
Collapse
Affiliation(s)
- Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Vladimíra Sládková
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Tetyana Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Věra Vosecká
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, 101 Life Science Building, Memphis, TN, 38152, USA
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
2
|
Bandekar M, Panda D. Microtubule depolymerization induces ferroptosis in neuroblastoma cells. IUBMB Life 2024; 76:1186-1198. [PMID: 39038059 DOI: 10.1002/iub.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Estramustine (EM), a clinically successful hormone-refractory anti-prostate cancer drug, exhibited potent anti-proliferative activity, depolymerized microtubules, blocked cells at mitosis, and induced cell death in different cancer cells. Altered iron metabolism is a feature of cancer cells. Using EM, we examined the plausible relationship between microtubule depolymerization and induction of ferroptosis in human neuroblastoma (SH-SY5Y and IMR-32) cells. EM reduced glutathione (GSH) levels and induced reactive oxygen species (ROS) generation. The pre-treatment of neuroblastoma cells with ROS scavengers (N-acetyl cysteine and dithiothreitol) reduced the anti-proliferative effects of EM. EM treatment increased labile iron pool (LIP), depleted glutathione peroxidase 4 (GPX4) levels, and lipid peroxidation, hallmark features of ferroptosis, highlighting ferroptosis induction. Ferroptosis inhibitors (deferoxamine mesylate and liproxstatin-1) abrogated the cytotoxic effects of EM, further confirming ferroptosis induction. Vinblastine and nocodazole also increased LIP and induced lipid peroxidation in neuroblastoma cells. This study provides evidence for the coupling of microtubule integrity to ferroptosis. The results also suggest that microtubule-depolymerizing agents may be considered for developing pro-ferroptosis chemotherapeutics.
Collapse
Affiliation(s)
- Mayuri Bandekar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- National Institute of Pharmaceutical Education and Research, Mohali, India
| |
Collapse
|
3
|
Prassanawar SS, Sarkar T, Panda D. CEP41, a ciliopathy-linked centrosomal protein, regulates microtubule assembly and cell proliferation. J Cell Sci 2024; 137:jcs261927. [PMID: 38841887 DOI: 10.1242/jcs.261927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Centrosomal proteins play pivotal roles in orchestrating microtubule dynamics, and their dysregulation leads to disorders, including cancer and ciliopathies. Understanding the multifaceted roles of centrosomal proteins is vital to comprehend their involvement in disease development. Here, we report novel cellular functions of CEP41, a centrosomal and ciliary protein implicated in Joubert syndrome. We show that CEP41 is an essential microtubule-associated protein with microtubule-stabilizing activity. Purified CEP41 binds to preformed microtubules, promotes microtubule nucleation and suppresses microtubule disassembly. When overexpressed in cultured cells, CEP41 localizes to microtubules and promotes microtubule bundling. Conversely, shRNA-mediated knockdown of CEP41 disrupts the interphase microtubule network and delays microtubule reassembly, emphasizing its role in microtubule organization. Further, we demonstrate that the association of CEP41 with microtubules relies on its conserved rhodanese homology domain (RHOD) and the N-terminal region. Interestingly, a disease-causing mutation in the RHOD domain impairs CEP41-microtubule interaction. Moreover, depletion of CEP41 inhibits cell proliferation and disrupts cell cycle progression, suggesting its potential involvement in cell cycle regulation. These insights into the cellular functions of CEP41 hold promise for unraveling the impact of its mutations in ciliopathies.
Collapse
Affiliation(s)
- Shweta Shyam Prassanawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Tuhin Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| |
Collapse
|
4
|
Sulimenko V, Sládková V, Sulimenko T, Dráberová E, Vosecká V, Dráberová L, Skalli O, Dráber P. Regulation of microtubule nucleation in mouse bone marrow-derived mast cells by ARF GTPase-activating protein GIT2. Front Immunol 2024; 15:1321321. [PMID: 38370406 PMCID: PMC10870779 DOI: 10.3389/fimmu.2024.1321321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Aggregation of high-affinity IgE receptors (FcϵRIs) on granulated mast cells triggers signaling pathways leading to a calcium response and release of inflammatory mediators from secretory granules. While microtubules play a role in the degranulation process, the complex molecular mechanisms regulating microtubule remodeling in activated mast cells are only partially understood. Here, we demonstrate that the activation of bone marrow mast cells induced by FcϵRI aggregation increases centrosomal microtubule nucleation, with G protein-coupled receptor kinase-interacting protein 2 (GIT2) playing a vital role in this process. Both endogenous and exogenous GIT2 were associated with centrosomes and γ-tubulin complex proteins. Depletion of GIT2 enhanced centrosomal microtubule nucleation, and phenotypic rescue experiments revealed that GIT2, unlike GIT1, acts as a negative regulator of microtubule nucleation in mast cells. GIT2 also participated in the regulation of antigen-induced degranulation and chemotaxis. Further experiments showed that phosphorylation affected the centrosomal localization of GIT2 and that during antigen-induced activation, GIT2 was phosphorylated by conventional protein kinase C, which promoted microtubule nucleation. We propose that GIT2 is a novel regulator of microtubule organization in activated mast cells by modulating centrosomal microtubule nucleation.
Collapse
Affiliation(s)
- Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimíra Sládková
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Věra Vosecká
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lubica Dráberová
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Rao VK, Ashtam A, Panda D, Guchhait SK. Natural-Product-Inspired Discovery of Trimethoxyphenyl-1,2,4-triazolosulfonamides as Potent Tubulin Polymerization Inhibitors. ChemMedChem 2024; 19:e202300562. [PMID: 37975190 DOI: 10.1002/cmdc.202300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
An approach of natural product-inspired strategy and incorporation of an NP-privileged motif has been investigated for the discovery of new tubulin polymerization inhibitors. Two series, N-Arylsulfonyl-3-arylamino-5-amino-1,2,4-triazole derivatives, and their isomers were considered. The compounds were synthesized by construction of the N-aryl-1,2,4-triazole-3,5-diamine motif and sulfonylation. Although the chemo- and regioselectivity in sulfonylation were challenging due to multiple ring-tautomerizable-NH and exocyclic NH2 functionalities present in the molecular motifs, the developed synthetic method enabled the preparation of designed molecular skeletons with biologically important motifs. The approach also led to explore interesting molecular regio- and stereochemical aspects valuable for activity. The X-ray crystallography study indicated that the hydrogen bonding between the arylamine-NH and the arylsulfonyl-"O" unit and appropriate molecular-functionality topology allowed the cis-locking of two aryls, which is important for tubulin-binding and antiproliferative properties. All synthesized compounds majorly showed characteristic antiproliferative effects in breast cancer cells (MCF-7), and four compounds exhibited potent antiproliferative activity. One compound potently bound to tubulin at the colchicine site and inhibited tubulin polymerization in vitro. The compound significantly depolymerized microtubules in MCF-7 cells, arrested the cells at the G2/M phase, and induced cell death. This study represents the importance of the design strategy in medicinal chemistry and the molecular structural features relevant to anticancer anti-tubulin properties. The explored molecules have the potential for further development.
Collapse
Affiliation(s)
- Vajja Krishna Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Dulal Panda
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
| |
Collapse
|
6
|
Kurian J, Ashtam A, Kesavan A, Chaluvalappil SV, Panda D, Manheri MK. Hybridization of the Pharmacophoric Features of Discoipyrrole C and Combretastatin A-4 toward New Anticancer Leads. ChemMedChem 2023; 18:e202300081. [PMID: 37256820 DOI: 10.1002/cmdc.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Pharmacophore hybridization is an attractive strategy to identify new leads against multifactorial diseases such as cancer. Based on literature analysis of compounds possessing 'vicinal diaryl' fragment in their structure, we considered Discoipyrroles A-D and Combretastatin A-4 (CA-4) as possible components in hybrid design. Discoipyrrole C (Dis C) and CA-4 were used as reference compounds in these studies and their hybrids, in the form of 4,5-diaryl-1H-pyrrol-3(2H)-ones, were synthesized from suitable amino acid precursors though their ynone intermediates. Of these, the hybrid having exact substitution pattern as that of CA-4 showed better potency and selectivity than Dis C, but its activity was less compared to CA-4. This new analog disrupted interphase microtubules by inhibiting tubulin assembly by binding to the colchicine site, induced multipolar spindles, caused cell cycle block and apoptosis in HeLa cells. It also inhibited colony formation and migration of breast cancer cell lines.
Collapse
Affiliation(s)
- Jais Kurian
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Anvesh Ashtam
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Akila Kesavan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | | | - Dulal Panda
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, 160062, India
| | - Muraleedharan K Manheri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|
7
|
Kumari A, Prassanawar SS, Panda D. β-III Tubulin Levels Determine the Neurotoxicity Induced by Colchicine-Site Binding Agent Indibulin. ACS Chem Neurosci 2023; 14:19-34. [PMID: 36541944 DOI: 10.1021/acschemneuro.2c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Indibulin, a microtubule-depolymerizing agent, produces minimal neurotoxicity in animals. It is also less cytotoxic toward differentiated neuronal cells than undifferentiated cells. We found that the levels of β-III tubulin, acetylated tubulin, and polyglutamylated tubulin were significantly increased in differentiated neuroblastoma cells (SH-SY5Y). Since neuronal cells express β-tubulin isotypes differently from other cell types, we explored the binding of indibulin to different β-tubulin isotypes. Our molecular docking analysis suggested that indibulin binds to β-III tubulin with lower affinity than to other β-tubulin isotypes. We therefore studied the implications of different β-tubulin isotypes on the cytotoxic effects of indibulin, colchicine, and vinblastine in differentiated SH-SY5Y cells. Upon depletion of β-III tubulin in the differentiated cells, the toxicity of indibulin and colchicine significantly increased, while sensitivity to vinblastine was unaffected. Using biochemical, bioinformatics, and fluorescence spectroscopic techniques, we have identified the binding site of indibulin on tubulin, which had not previously been established. Indibulin inhibited the binding of colchicine and C12 (a colchicine-site binder) to tubulin and also increased the dissociation constant of the interaction between tubulin and colchicine. Indibulin did not inhibit the binding of vinblastine or taxol to tubulin. Interestingly, indibulin antagonized colchicine treatment but synergized with vinblastine treatment in a combination study performed in MDA-MB-231 cells. The results indicate that indibulin is a colchicine-site binder and that the efficacy of colchicine-site binders is affected by the β-III tubulin levels in the cells.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shweta S Prassanawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.,National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| |
Collapse
|