1
|
Lechable M, Tang X, Siebert S, Feldbacher A, Fernández-Quintero ML, Breuker K, Juliano CE, Liedl KR, Hobmayer B, Hartl M. High Intrinsic Oncogenic Potential in the Myc-Box-Deficient Hydra Myc3 Protein. Cells 2023; 12:cells12091265. [PMID: 37174665 PMCID: PMC10177328 DOI: 10.3390/cells12091265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture systems. Myc transcription factors control fundamental cellular processes such as cell proliferation, cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes four myc genes (myc1-4). Previous structural and biochemical characterization showed that the Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the implementation of a differentiation program. In vitro DNA binding studies showed that Myc3 dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further revealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus, as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell transformation potential. We discuss our findings in the context of oncogenic transformation and cell differentiation, both relevant for human cancer, where Myc represents a major driver.
Collapse
Affiliation(s)
- Marion Lechable
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Xuechen Tang
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Angelika Feldbacher
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bert Hobmayer
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Hartl
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Biochemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Vogg MC, Ferenc J, Buzgariu WC, Perruchoud C, Sanchez PGL, Beccari L, Nuninger C, Le Cras Y, Delucinge-Vivier C, Papasaikas P, Vincent S, Galliot B, Tsiairis CD. The transcription factor Zic4 promotes tentacle formation and prevents epithelial transdifferentiation in Hydra. SCIENCE ADVANCES 2022; 8:eabo0694. [PMID: 36563144 PMCID: PMC9788771 DOI: 10.1126/sciadv.abo0694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The molecular mechanisms that maintain cellular identities and prevent dedifferentiation or transdifferentiation remain mysterious. However, both processes are transiently used during animal regeneration. Therefore, organisms that regenerate their organs, appendages, or even their whole body offer a fruitful paradigm to investigate the regulation of cell fate stability. Here, we used Hydra as a model system and show that Zic4, whose expression is controlled by Wnt3/β-catenin signaling and the Sp5 transcription factor, plays a key role in tentacle formation and tentacle maintenance. Reducing Zic4 expression suffices to induce transdifferentiation of tentacle epithelial cells into foot epithelial cells. This switch requires the reentry of tentacle battery cells into the cell cycle without cell division and is accompanied by degeneration of nematocytes embedded in these cells. These results indicate that maintenance of cell fate by a Wnt-controlled mechanism is a key process both during homeostasis and during regeneration.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Jaroslav Ferenc
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Wanda Christa Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Paul Gerald Layague Sanchez
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Leonardo Beccari
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon 1, Lyon, France
| | - Clara Nuninger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Youn Le Cras
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Céline Delucinge-Vivier
- iGE3 Genomics Platform, University of Geneva, 1 Rue Michel-Servet, Geneva 4 1211, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Stéphane Vincent
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie, Lyon F-69364, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
- Corresponding author. (B.G.); (C.D.T.)
| | - Charisios D. Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- Corresponding author. (B.G.); (C.D.T.)
| |
Collapse
|