1
|
Bang I, Hattori T, Leloup N, Corrado A, Nyamaa A, Koide A, Geles K, Buck E, Koide S. Selective targeting of oncogenic hotspot mutations of the HER2 extracellular domain. Nat Chem Biol 2025; 21:706-715. [PMID: 39438724 DOI: 10.1038/s41589-024-01751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Oncogenic mutations in the extracellular domain (ECD) of cell-surface receptors could serve as tumor-specific antigens that are accessible to antibody therapeutics. Such mutations have been identified in receptor tyrosine kinases including HER2. However, it is challenging to selectively target a point mutant, while sparing the wild-type protein. Here we developed antibodies selective to HER2 S310F and S310Y, the two most common oncogenic mutations in the HER2 ECD, via combinatorial library screening and structure-guided design. Cryogenic-electron microscopy structures of the HER2 S310F homodimer and an antibody bound to HER2 S310F revealed that these antibodies recognize the mutations in a manner that mimics the dimerization arm of HER2 and thus inhibit HER2 dimerization. These antibodies as T cell engagers selectively killed a HER2 S310F-driven cancer cell line in vitro, and in vivo as a xenograft. These results validate HER2 ECD mutations as actionable therapeutic targets and offer promising candidates toward clinical development.
Collapse
Affiliation(s)
- Injin Bang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nadia Leloup
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Alexis Corrado
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Atekana Nyamaa
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Division of Hematology Oncology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Geles
- Black Diamond Therapeutics, New York, NY, USA
| | | | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Mijit A, Wang X, Li Y, Xu H, Chen Y, Xue W. Mapping synthetic binding proteins epitopes on diverse protein targets by protein structure prediction and protein-protein docking. Comput Biol Med 2023; 163:107183. [PMID: 37352638 DOI: 10.1016/j.compbiomed.2023.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
Synthetic binding proteins (SBPs) are a class of artificial proteins engineered from privileged protein scaffolds, which can form highly specific molecular recognition interfaces with a variety of targets. Due to the characteristics of small size, high stability, and good tissue permeability, SBPs have important applications in biomedical research, disease diagnosis and treatment. However, knowledge of SBPs epitopes on the structures of target proteins is still limited, which hinder the development of novel SBPs. In this study, based on the currently available information of SBPs and their targets, 96 pairs of interacting proteins referring to 96 representative SBPs and 80 different targets, were systemically investigated using the state-of-the-art computational modeling techniques including AlphaFold2 protein structure prediction and Rosetta protein-protein docking. As a result, 71 out of the 96 pairs were successfully docked, of which 18, 33, and 20 pairs were defined as models with high, medium, and acceptable quality, respectively. In addition, the interface information was analyzed to decipher the interaction types driven SBPs and targets recognition. Overall, this work not only provides important structural information for understanding the mechanism of action of other SBPs with same protein scaffold, but also for aiding the rational protein engineering and to design of novel SBPs with biomedical applications.
Collapse
Affiliation(s)
- Arzu Mijit
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaona Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yanlin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Hangwei Xu
- School of Medicine, Hangzhou City University, Hangzhou, 310000, China
| | - Yingjun Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
3
|
Sha F, Kurosawa K, Glasser E, Ketavarapu G, Albazzaz S, Koide A, Koide S. Monobody Inhibitor Selective to the Phosphatase Domain of SHP2 and its Use as a Probe for Quantifying SHP2 Allosteric Regulation. J Mol Biol 2023; 435:168010. [PMID: 36806475 PMCID: PMC10079645 DOI: 10.1016/j.jmb.2023.168010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
SHP2 is a phosphatase/adaptor protein that plays an important role in various signaling pathways. Its mutations are associated with cancers and developmental diseases. SHP2 contains a protein tyrosine phosphatase (PTP) and two SH2 domains. Selective inhibition of these domains has been challenging due to the multitude of homologous proteins in the proteome. Here, we developed a monobody, synthetic binding protein, that bound to and inhibited the SHP2 PTP domain. It was selective to SHP2 PTP over close homologs. A crystal structure of the monobody-PTP complex revealed that the monobody bound both highly conserved residues in the active site and less conserved residues in the periphery, rationalizing its high selectivity. Its epitope overlapped with the interface between the PTP and N-terminal SH2 domains that is formed in auto-inhibited SHP2. By using the monobody as a probe for the accessibility of the PTP active site, we developed a simple, nonenzymatic assay for the allosteric regulation of SHP2. The assay showed that, in the absence of an activating phospho-Tyr ligand, wild-type SHP2 and the "PTP-dead" C459E mutant were predominantly in the closed state in which the PTP active site is inaccessible, whereas the E76K and C459S mutants were in the open, active state. It also revealed that previously developed monobodies to the SH2 domains, ligands lacking a phospho-Tyr, weakly favored the open state. These results provide corroboration for a conformational equilibrium underlying allosteric regulation of SHP2, provide powerful tools for characterizing and controlling SHP2 functions, and inform drug discovery against SHP2.
Collapse
Affiliation(s)
- Fern Sha
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Kohei Kurosawa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Eliezra Glasser
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Samara Albazzaz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States; Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|