1
|
Wang Y, Xu C, Gao Y, Ma Y, Zhang X, Zhang L, Di H, Ma J, Dong L, Zeng X, Zhang N, Xu J, Li Y, Gao C, Wang Z, Zhou Y. Physiological Mechanisms Underlying Tassel Symptom Formation in Maize Infected with Sporisorium reilianum. PLANTS (BASEL, SWITZERLAND) 2024; 13:238. [PMID: 38256790 PMCID: PMC10820020 DOI: 10.3390/plants13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Head smut is a soil-borne fungal disease caused by Sporisorium reilianum that infects maize tassels and ears. This disease poses a tremendous threat to global maize production. A previous study found markedly different and stably heritable tassel symptoms in some maize inbred lines with Sipingtou blood after infection with S. reilianum. In the present study, 55 maize inbred lines with Sipingtou blood were inoculated with S. reilianum and classified into three tassel symptom types (A, B, and C). Three maize inbred lines representing these classes (Huangzao4, Jing7, and Chang7-2, respectively) were used as test materials to investigate the physiological mechanisms of tassel formation in infected plants. Changes in enzyme activity, hormone content, and protein expression were analyzed in all three lines after infection and in control plants. The activities of peroxidase (POD), superoxide dismutase (SOD), and phenylalanine-ammonia-lyase (PAL) were increased in the three typical inbred lines after inoculation. POD and SOD activities showed similar trends between lines, with the increase percentage peaking at the V12 stage (POD: 57.06%, 63.19%, and 70.28% increases in Huangzao4, Jing7, and Chang7-2, respectively; SOD: 27.01%, 29.62%, and 47.07% in Huangzao4, Jing7, and Chang7-2, respectively. These were all higher than in the disease-resistant inbred line Mo17 at the same growth stage); this stage was found to be key in tassel symptom formation. Levels of gibberellic acid (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) were also altered in the three typical maize inbred lines after inoculation, with changes in GA3 and IAA contents tightly correlated with tassel symptoms after S. reilianum infection. The differentially expressed proteins A5H8G4, P09233, and Q8VXG7 were associated with changes in enzyme activity, whereas P49353, P13689, and P10979 were associated with changes in hormone contents. Fungal infection caused reactive oxygen species (ROS) and nitric oxide (NO) bursts in the three typical inbred lines. This ROS accumulation caused biofilm disruption and altered host signaling pathways, whereas NO signaling triggered strong secondary metabolic responses in the host and altered the activities of defense-related enzymes. These factors together resulted in the formation of varying tassel symptoms. Thus, interactions between S. reilianum and susceptible maize materials were influenced by a variety of signals, enzymes, hormones, and metabolic cycles, encompassing a very complex regulatory network. This study preliminarily identified the physiological mechanisms leading to differences in tassel symptoms, deepening our understanding of S. reilianum-maize interactions.
Collapse
Affiliation(s)
- Yuhe Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chuzhen Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yansong Gao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yanhua Ma
- Institute of Forage and Grass land Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Xiaoming Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Jinxin Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Naifu Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Jiawei Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yujuan Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chao Gao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Khan M, Djamei A. Co-immunoprecipitation-Based Identification of Effector-Host Protein Interactions from Pathogen-Infected Plant Tissue. Methods Mol Biol 2023; 2690:87-100. [PMID: 37450139 DOI: 10.1007/978-1-0716-3327-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Protein-protein interactions play an essential role in host-pathogen interactions. Phytopathogens secrete a cocktail of effector proteins to suppress plant immunity and reprogram host cell metabolism in their favor. Identification and characterization of effectors and their target protein complexes by co-immunoprecipitation can help to gain a deeper understanding of the functions of individual effectors during pathogenicity and can also provide new insights into the wiring of plant signaling pathways or metabolic complexes. Here we describe a detailed protocol to perform co-immunoprecipitation of effector-target protein complexes from plant extracts with an example of the Ustilago maydis/maize pathosystem for which we also provide a fungal protoplast transformation and maize seedling infection protocols.
Collapse
Affiliation(s)
- Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Zhou Y, Yao M, Wang Q, Zhang X, Di H, Zhang L, Dong L, Xu Q, Liu X, Zeng X, Wang Z. Analysis of QTLs and Candidate Genes for Tassel Symptoms in Maize Infected with Sporisorium reilianum. Int J Mol Sci 2022; 23:ijms232214416. [PMID: 36430897 PMCID: PMC9692487 DOI: 10.3390/ijms232214416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heat smut is a fungal soil-borne disease caused by Sporisorium reilianum, and affects the development of male and female tassels. Our previous research found that the tassel symptoms in maize infected with Sporisorium reilianum significantly differed in inbred lines with Sipingtou blood, and exhibited stable heredity over time at multiple locations. In this study, cytological analysis demonstrated that the cellular organization structures of three typical inbred lines (Huangzao4, Jing7, and Chang7-2) showed significant discrepancies at the VT stage. QTLs that control the different symptoms of maize tassels infected with Sporisorium reilianum were located in two F2 populations, which were constructed using three typical inbred lines. The BSA (bulked segregation analysis) method was used to construct mixed gene pools based on typical tassel symptoms. The QTLs of different symptoms of maize tassels infected with Sporisorium reilianum were detected with 869 SSR markers covering the whole maize genome. The mixed gene pools were screened with polymorphic markers between the parents. Additional SSR markers were added near the above marker to detect genotypes in partially single plants in F2 populations. The QTL controlling tassel symptoms in the Huangzao4 and Jing7 lines was located on the bin 1.06 region, between the markers of umc1590 and bnlg1598, and explained 21.12% of the phenotypic variation with an additive effect of 0.6524. The QTL controlling the tassel symptoms of the Jing7 and Chang7-2 lines was located on the bin 2.07 region, between the markers of umc1042 and bnlg1335, and explained 11.26% phenotypic variation with an additive effect of 0.4355. Two candidate genes (ZmABP2 and Zm00001D006403) were identified by a conjoint analysis of label-free quantification proteome sequencings.
Collapse
|