1
|
Fung HYJ, Mittal SR, Niesman AB, Jiou J, Shakya B, Yoshizawa T, Cansizoglu AE, Rout MP, Chook YM. Phosphate-dependent nuclear export via a non-classical NES class recognized by exportin Msn5. Nat Commun 2025; 16:2580. [PMID: 40089503 PMCID: PMC11910620 DOI: 10.1038/s41467-025-57752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Here, we present a high resolution cryogenic-electron microscopy structure showing the phosphorylated 35-residue nuclear export signal of Pho4, which binds the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches. These findings characterize a mechanism of phosphate-specific recognition mediated by a non-classical signal distinct from that for Exportin-1. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75039, US
| | - Sanraj R Mittal
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10021, US
| | - Ashley B Niesman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75039, US
| | - Jenny Jiou
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Victoria, 302, Australia
| | - Binita Shakya
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Clinical, Diagnostic & Therapeutic Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, US
| | - Takuya Yoshizawa
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Ahmet E Cansizoglu
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA, 01821, US
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10021, US
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US.
| |
Collapse
|
2
|
Fung HYJ, Jiou J, Niesman AB, Bernardes NE, Chook YM. Nap1 and Kap114 co-chaperone H2A-H2B and facilitate targeted histone release in the nucleus. J Cell Biol 2025; 224:e202408193. [PMID: 39601790 PMCID: PMC11602657 DOI: 10.1083/jcb.202408193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Core histones, synthesized and processed in the cytoplasm, must be chaperoned as they are transported into the nucleus for nucleosome assembly. The importin Kap114 transports H2A-H2B into the yeast nucleus, where RanGTP facilitates histone release. Kap114 and H2A-H2B also bind the histone chaperone Nap1, but how Nap1 and Kap114 cooperate in transport and nucleosome assembly remains unclear. Here, biochemical and structural analyses show that Kap114, H2A-H2B, and a Nap1 dimer (Nap12) associate in the absence and presence of RanGTP to form equimolar complexes. A previous study had shown that RanGTP reduces Kap114's ability to chaperone H2A-H2B, but a new cryo-EM structure of the Nap12•H2A-H2B•Kap114•RanGTP complex explains how both Kap114 and Nap12 interact with H2A-H2B, restoring its chaperoning within the assembly while effectively depositing it into nucleosomes. Together, our results suggest that Kap114 and Nap12 provide a sheltered path that facilitates the transfer of H2A-H2B from Kap114 to Nap12, ultimately directing its specific deposition into nucleosomes.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashley B. Niesman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalia E. Bernardes
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Kariapper L, Marathe IA, Niesman AB, Suino-Powell K, Min Chook Y, Wysocki VH, Worden EJ. Setdb1 and Atf7IP form a hetero-trimeric complex that blocks Setdb1 nuclear export. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630145. [PMID: 39764026 PMCID: PMC11703210 DOI: 10.1101/2024.12.23.630145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in constitutive heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been evaluated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.
Collapse
Affiliation(s)
- Leena Kariapper
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Ila A. Marathe
- School Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA USA
| | - Ashley B. Niesman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Kelly Suino-Powell
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Vicki H. Wysocki
- School Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA USA
| | - Evan J. Worden
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Fung HYJ, Mittal SR, Niesman AB, Jiou J, Shakya B, Yoshizawa T, Cansizoglu AE, Rout MP, Chook YM. Phosphate-dependent nuclear export via a novel NES class recognized by exportin Msn5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607649. [PMID: 39211127 PMCID: PMC11361136 DOI: 10.1101/2024.08.12.607649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Unlike the traditional hydrophobic nuclear export signal (NES) utilized by the Exportin-1/XPO1 system, cryogenic-electron microscopy structures reveal that Pho4 presents a novel, phosphorylated 35-residue NES that interacts with the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches, unveiling a previously unknown mechanism of phosphate-specific recognition. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.
Collapse
|
5
|
Fung HYJ, Neisman AB, Bernardes NE, Jiou J, Chook YM. Nap1 and Kap114 co-chaperone H2A-H2B and facilitate targeted histone release in the nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.539987. [PMID: 37214964 PMCID: PMC10197623 DOI: 10.1101/2023.05.09.539987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Core histones are synthesized and processed in the cytoplasm before transport into the nucleus for assembly into nucleosomes; however, they must also be chaperoned as free histones are toxic. The importin Kap114 binds and transports histone H2A-H2B into the yeast nucleus, where RanGTP facilitates H2A-H2B release. Kap114 and H2A-H2B also bind the Nap1 histone chaperone, which is found in both the cytoplasm and the nucleus, but how Nap1 and Kap114 cooperate in H2A-H2B processing and nucleosome assembly has been unclear. To understand these mechanisms, we used biochemical and structural analyses to reveal how Nap1, Kap114, H2A-H2B and RanGTP interact. We show that Kap114, H2A-H2B and a Nap1 dimer (Nap1 2 ) assemble into a 1:1:1 ternary complex. Cryogenic electron microscopy revealed two distinct Kap114/Nap1 2 /H2A-H2B structures: one of H2A-H2B sandwiched between Nap1 2 and Kap114, and another in which Nap1 2 bound to the Kap114·H2A-H2B complex without contacting H2A-H2B. Another Nap1 2 ·H2A-H2B·Kap114·Ran GTP structure reveals the nuclear complex. Mutagenesis revealed shared critical interfaces in all three structures. Consistent with structural findings, DNA competition experiments demonstrated that Kap114 and Nap1 2 together chaperone H2A-H2B better than either protein alone. When RanGTP is present, Kap114's chaperoning activity diminishes. However, the presence of Nap1 2 within the Nap1 2 ·H2A-H2B·Kap114·Ran GTP quaternary complex restores its ability to chaperone H2A-H2B. This complex effectively deposits H2A-H2B into nucleosomes. Together, these findings suggest that Kap114 and Nap12 provide a sheltered path from cytoplasm to nucleus, facilitating the transfer of H2A-H2B from Kap114 to Nap1 2 , ultimately directing its specific deposition into nucleosomes.
Collapse
|
6
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
7
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D'Arcy S. Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9. Structure 2023; 31:903-911.e3. [PMID: 37379840 PMCID: PMC10527638 DOI: 10.1016/j.str.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.
Collapse
Affiliation(s)
- Joy M Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA.
| |
Collapse
|
8
|
Jiou J, Shaffer JM, Bernades NE, Fung HYJ, Kikumoto Dias J, D’Arcy S, Chook YM. Mechanism of RanGTP priming H2A-H2B release from Kap114 in an atypical RanGTP•Kap114•H2A-H2B complex. Proc Natl Acad Sci U S A 2023; 120:e2301199120. [PMID: 37450495 PMCID: PMC10629556 DOI: 10.1073/pnas.2301199120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Previously, we showed that the nuclear import receptor Importin-9 wraps around the H2A-H2B core to chaperone and transport it from the cytoplasm to the nucleus. However, unlike most nuclear import systems where RanGTP dissociates cargoes from their importins, RanGTP binds stably to the Importin-9•H2A-H2B complex, and formation of the ternary RanGTP•Importin-9•H2A-H2B complex facilitates H2A-H2B release to the assembling nucleosome. It was unclear how RanGTP and the cargo H2A-H2B can bind simultaneously to an importin, and how interactions of the three components position H2A-H2B for release. Here, we show cryo-EM structures of Importin-9•RanGTP and of its yeast homolog Kap114, including Kap114•RanGTP, Kap114•H2A-H2B, and RanGTP•Kap114•H2A-H2B, to explain how the conserved Kap114 binds H2A-H2B and RanGTP simultaneously and how the GTPase primes histone transfer to the nucleosome. In the ternary complex, RanGTP binds to the N-terminal repeats of Kap114 in the same manner as in the Kap114/Importin-9•RanGTP complex, and H2A-H2B binds via its acidic patch to the Kap114 C-terminal repeats much like in the Kap114/Importin-9•H2A-H2B complex. Ran binds to a different conformation of Kap114 in the ternary RanGTP•Kap114•H2A-H2B complex. Here, Kap114 no longer contacts the H2A-H2B surface proximal to the H2A docking domain that drives nucleosome assembly, positioning it for transfer to the assembling nucleosome or to dedicated H2A-H2B chaperones in the nucleus.
Collapse
Affiliation(s)
- Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Joy M. Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Natalia E. Bernades
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Juliana Kikumoto Dias
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Sheena D’Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|