1
|
Yang Z, Zhang Z, Qiao Z, Guo X, Wen Y, Zhou Y, Yao C, Fan H, Wang B, Han G. The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:787-809. [PMID: 38477645 DOI: 10.1111/jipb.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named RING ZINC FINGER PROTEIN 1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.
Collapse
Affiliation(s)
- Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziwei Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xueying Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yixuan Wen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yingxue Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Chunliang Yao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, 257000, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| |
Collapse
|