1
|
Liu Y, Bilen M, McNicoll MM, Harris RA, Fong BC, Iqbal MA, Paul S, Mayne J, Walker K, Wang J, Figeys D, Slack RS. Early postnatal defects in neurogenesis in the 3xTg mouse model of Alzheimer's disease. Cell Death Dis 2023; 14:138. [PMID: 36801910 PMCID: PMC9938901 DOI: 10.1038/s41419-023-05650-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia. The hippocampus, which is one of the sites where neural stem cells reside and new neurons are born, exhibits the most significant neuronal loss in AD. A decline in adult neurogenesis has been described in several animal models of AD. However, the age at which this defect first appears remains unknown. To determine at which stage, from birth to adulthood, the neurogenic deficits are found in AD, we used the triple transgenic mouse model of AD (3xTg). We show that defects in neurogenesis are present as early as postnatal stages, well before the onset of any neuropathology or behavioral deficits. We also show that 3xTg mice have significantly fewer neural stem/progenitor cells, with reduced proliferation and decreased numbers of newborn neurons at postnatal stages, consistent with reduced volumes of hippocampal structures. To determine whether there are early changes in the molecular signatures of neural stem/progenitor cells, we perform bulk RNA-seq on cells sorted directly from the hippocampus. We show significant changes in the gene expression profiles at one month of age, including genes of the Notch and Wnt pathways. These findings reveal impairments in neurogenesis very early in the 3xTg AD model, which provides new opportunities for early diagnosis and therapeutic interventions to prevent neurodegeneration in AD.
Collapse
Affiliation(s)
- Yubing Liu
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Maria Bilen
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Marie-Michelle McNicoll
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Richard A. Harris
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Bensun C. Fong
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Mohamed Ariff Iqbal
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Smitha Paul
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Janice Mayne
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Krystal Walker
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Jing Wang
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada ,grid.412687.e0000 0000 9606 5108Regenerative Medicine Program, Ottawa Hospital Research Institute, K1H 8L6 Ottawa, Canada
| | - Daniel Figeys
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Ruth S. Slack
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| |
Collapse
|
2
|
Fong BC, Chakroun I, Iqbal MA, Paul S, Bastasic J, O’Neil D, Yakubovich E, Bejjani AT, Ahmadi N, Carter A, Clark A, Leone G, Park DS, Ghanem N, Vandenbosch R, Slack RS. The Rb/E2F axis is a key regulator of the molecular signatures instructing the quiescent and activated adult neural stem cell state. Cell Rep 2022; 41:111578. [DOI: 10.1016/j.celrep.2022.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
|