1
|
Dhital S, Deo P, Stuart I, Huang C, Zavan L, Han ML, Kaparakis-Liaskos M, Ramm G, Schittenhelm RB, Howden B, Naderer T. Characterization of outer membrane vesicles released by clinical isolates of Neisseria gonorrhoeae. Proteomics 2024; 24:e2300087. [PMID: 38059892 DOI: 10.1002/pmic.202300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The sexually transmitted pathogen Neisseria gonorrhoeae releases membrane vesicles including outer membrane vesicles (OMVs) during infections. OMVs traffic outer membrane molecules, such as the porin PorB and lipo-oligosaccharide (LOS), into host innate immune cells, eliciting programmed cell death pathways, and inflammation. Little is known, however, about the proteome and LOS content of OMVs released by clinical strains isolated from different infection sites, and whether these vesicles similarly activate immune responses. Here, we characterized OMVs from four N. gonorrhoeae isolates and determined their size, abundance, proteome, LOS content, and activation of inflammatory responses in macrophages. The overall proteome of the OMVs was conserved between the four different isolates, which included major outer membrane and periplasm proteins. Despite this, we observed differences in the rate of OMV biogenesis and the relative abundance of membrane proteins and LOS. Consequently, OMVs from clinical isolates induced varying rates of macrophage cell death and the secretion of interleukin-1 family members, such as IL-1α and IL-1β. Overall, these findings demonstrate that clinical isolates of N. gonorrhoeae utilize membrane vesicles to release proteins and lipids, which affects innate immune responses.
Collapse
Affiliation(s)
- Subhash Dhital
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Pankaj Deo
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Isabella Stuart
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lauren Zavan
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Mei-Ling Han
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Georg Ramm
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas Naderer
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Jeon Y, Chow SH, Stuart I, Weir A, Yeung AT, Hale C, Sridhar S, Dougan G, Vince JE, Naderer T. FBXO11 governs macrophage cell death and inflammation in response to bacterial toxins. Life Sci Alliance 2023; 6:e202201735. [PMID: 36977592 PMCID: PMC10053445 DOI: 10.26508/lsa.202201735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Staphylococcus aureus causes severe infections such as pneumonia and sepsis depending on the pore-forming toxin Panton-Valentine leukocidin (PVL). PVL kills and induces inflammation in macrophages and other myeloid cells by interacting with the human cell surface receptor, complement 5a receptor 1 (C5aR1). C5aR1 expression is tighly regulated and may thus modulate PVL activity, although the mechanisms involved remain incompletely understood. Here, we used a genome-wide CRISPR/Cas9 screen and identified F-box protein 11 (FBXO11), an E3 ubiquitin ligase complex member, to promote PVL toxicity. Genetic deletion of FBXO11 reduced the expression of C5aR1 at the mRNA level, whereas ectopic expression of C5aR1 in FBXO11-/- macrophages, or priming with LPS, restored C5aR1 expression and thereby PVL toxicity. In addition to promoting PVL-mediated killing, FBXO11 dampens secretion of IL-1β after NLRP3 activation in response to bacterial toxins by reducing mRNA levels in a BCL-6-dependent and BCL-6-independent manner. Overall, these findings highlight that FBXO11 regulates C5aR1 and IL-1β expression and controls macrophage cell death and inflammation following PVL exposure.
Collapse
Affiliation(s)
- Yusun Jeon
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Seong H Chow
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Isabella Stuart
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ashley Weir
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Amy Ty Yeung
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Christine Hale
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sushmita Sridhar
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Thomas Naderer
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|