1
|
Tartakoff AM. How the concentric organization of the nucleolus and chromatin ensures accuracy of ribosome biogenesis and drives transport. Genetics 2025; 229:iyaf030. [PMID: 40152466 DOI: 10.1093/genetics/iyaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The biogenetic transport of ribosomal subunit precursors must be conducted with precision to ensure production of functional ribosomes. With a focus on ribosome biogenesis in higher eukaryotic cells, we here discuss the following: (1) the concentric organization of the phases/subcompartments of the nucleus-including chromatin, (2) why the nucleolus reorganizes when ribosomal RNA synthesis is inhibited, and (3) the mechanism responsible for vectorial transport of particulate subunit intermediates between subcompartments. We call attention to evidence that (1) nucleolar proteins can access the entire volume of the nucleus, (2) that the packaging of rDNA is a key determinant of topology, (3) the constancy of contacts between subcompartments, and the likely importance of a Brownian ratchet for imparting both directionality and quality control upon transport. Transport appears to depend on "self-immersion," whereby the surfaces of particulate intermediates successively interact with components of the surrounding milieux, each of which may be thought of as a distinct solvent. The result is a vectorial and ordered process.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology, Case Western Reserve University, 2109 Cornell Road, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Veiko NN, Ershova ES, Kondratyeva EI, Porokhovnik LN, Zinchenko RA, Melyanovskaya YL, Krasovskiy SA, Vasilyeva TP, Kostyuk GP, Zakharova NV, Kostyuk SV. Copy Number Variations of Human Ribosomal Genes in Health and Disease: Role and Causes. FRONT BIOSCI-LANDMRK 2025; 30:25765. [PMID: 40018927 DOI: 10.31083/fbl25765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND A number of association studies have linked ribosomal DNA gene copy number (rDNA CN) to aging and pathology. Data from these studies are contradictory and depend on the quantitative method. METHODS The hybridization technique was used for rDNA quantification in human cells. We determined the rDNA CN from healthy controls (HCs) and patients with schizophrenia (SZ) or cystic fibrosis (CF) (total number of subjects N = 1124). For the first time, rDNA CN was quantified in 105 long livers (90-101 years old). In addition, we conducted a joint analysis of the data obtained in this work and previously published by our group (total, N = 3264). RESULTS We found increased rDNA CN in the SZ group (534 ± 108, N = 1489) and CF group (567 ± 100, N = 322) and reduced rDNA CN in patients with mild cognitive impairment (330 ± 60, N = 93) compared with the HC group (422 ± 104, N = 1360). For the SZ, CF, and HC groups, there was a decreased range of rDNA CN variation in older age subgroups compared to child subgroups. For 311 patients with SZ or CF, rDNA CN was determined two or three times, with an interval of months to several years. Only 1.2% of patients demonstrated a decrease in rDNA CN over time. We did not find significant rDNA CN variation in eight different organs of the same patient or in cells of the same fibroblast population. CONCLUSIONS The results suggest that rDNA CN is a relatively stable quantitative genetic trait statistically associated with some diseases, which however, can change in rare cases under conditions of chronic oxidative stress. We believe that age- and disease-related differences between the groups in mean rDNA CN and its variance are caused by the biased elimination of carriers of marginal (predominantly low) rDNA CN values.
Collapse
Affiliation(s)
- Natalia N Veiko
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Elizaveta S Ershova
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Elena I Kondratyeva
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Lev N Porokhovnik
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Rena A Zinchenko
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Yuliya L Melyanovskaya
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Stanislav A Krasovskiy
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Tatiana P Vasilyeva
- Department of Public Health, National Research Institute of Public Health n.a. N.А. Semashko, 105064 Moscow, Russia
| | - George P Kostyuk
- Research Department, N. A. Alexeev Clinical Psychiatric Hospital №1, 115447 Moscow, Russia
| | - Natalia V Zakharova
- Research Department, N. A. Alexeev Clinical Psychiatric Hospital №1, 115447 Moscow, Russia
| | - Svetlana V Kostyuk
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| |
Collapse
|
3
|
Abstract
In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.
Collapse
Affiliation(s)
- Matthew R. King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| |
Collapse
|
4
|
Khosraviani N, Yerlici VT, St-Germain J, Hou YY, Cao SB, Ghali C, Bokros M, Krishnan R, Hakem R, Lee S, Raught B, Mekhail K. Nucleolar Pol II interactome reveals TBPL1, PAF1, and Pol I at intergenic rDNA drive rRNA biogenesis. Nat Commun 2024; 15:9603. [PMID: 39505901 PMCID: PMC11541992 DOI: 10.1038/s41467-024-54002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Ribosomal DNA (rDNA) repeats harbor ribosomal RNA (rRNA) genes and intergenic spacers (IGS). RNA polymerase (Pol) I transcribes rRNA genes yielding rRNA components of ribosomes. IGS-associated Pol II prevents Pol I from excessively synthesizing IGS non-coding RNAs (ncRNAs) that can disrupt nucleoli and rRNA production. Here, compartment-enriched proximity-dependent biotin identification (compBioID) revealed the TATA-less-promoter-binding TBPL1 and transcription-regulatory PAF1 with nucleolar Pol II. TBPL1 localizes to TCT motifs, driving Pol II and Pol I and maintaining its baseline ncRNA levels. PAF1 promotes Pol II elongation, preventing unscheduled R-loops that hyper-restrain IGS Pol I-associated ncRNAs. PAF1 or TBPL1 deficiency disrupts nucleolar organization and rRNA biogenesis. In PAF1-deficient cells, repressing unscheduled IGS R-loops rescues nucleolar organization and rRNA production. Depleting IGS Pol I-dependent ncRNAs is sufficient to compromise nucleoli. We present the nucleolar interactome of Pol II and show that its regulation by TBPL1 and PAF1 ensures IGS Pol I ncRNAs maintaining nucleolar structure and function.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - V Talya Yerlici
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yi Yang Hou
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shi Bo Cao
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carla Ghali
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Bokros
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Lee
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Ontario, Canada.
- College of New Scholars, Artists and Scientists, The Royal Society of Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Gál Z, Boukoura S, Oxe KC, Badawi S, Nieto B, Korsholm LM, Geisler SB, Dulina E, Rasmussen AV, Dahl C, Lv W, Xu H, Pan X, Arampatzis S, Stratou DE, Galanos P, Lin L, Guldberg P, Bartek J, Luo Y, Larsen DH. Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation. Nat Commun 2024; 15:7797. [PMID: 39242676 PMCID: PMC11379943 DOI: 10.1038/s41467-024-52189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Ribosomal DNA (rDNA) encodes the ribosomal RNA genes and represents an intrinsically unstable genomic region. However, the underlying mechanisms and implications for genome integrity remain elusive. Here, we use Bloom syndrome (BS), a rare genetic disease characterized by DNA repair defects and hyper-unstable rDNA, as a model to investigate the mechanisms leading to rDNA instability. We find that in Bloom helicase (BLM) proficient cells, the homologous recombination (HR) pathway in rDNA resembles that in nuclear chromatin; it is initiated by resection, replication protein A (RPA) loading and BRCA2-dependent RAD51 filament formation. However, BLM deficiency compromises RPA-loading and BRCA1/2 recruitment to rDNA, but not RAD51 accumulation. RAD51 accumulates at rDNA despite depletion of long-range resection nucleases and rDNA damage results in micronuclei when BLM is absent. In summary, our findings indicate that rDNA is permissive to RAD51 accumulation in the absence of BLM, leading to micronucleation and potentially global genomic instability.
Collapse
Affiliation(s)
- Zita Gál
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Stavroula Boukoura
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Kezia Catharina Oxe
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Sara Badawi
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Blanca Nieto
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Lea Milling Korsholm
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ekaterina Dulina
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | | | - Christina Dahl
- Molecular Diagnostics, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Wei Lv
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Huixin Xu
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Xiaoguang Pan
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | | - Panagiotis Galanos
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, 8200, Denmark
| | - Per Guldberg
- Molecular Diagnostics, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, 5000, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm, Sweden
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, 8200, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
| |
Collapse
|
6
|
Daiß JL, Griesenbeck J, Tschochner H, Engel C. Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 2023; 404:1003-1023. [PMID: 37454246 DOI: 10.1515/hsz-2023-0214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
7
|
Islam RA, Rallis C. Ribosomal Biogenesis and Heterogeneity in Development, Disease, and Aging. EPIGENOMES 2023; 7:17. [PMID: 37606454 PMCID: PMC10443367 DOI: 10.3390/epigenomes7030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Although reported in the literature, ribosome heterogeneity is a phenomenon whose extent and implications in cell and organismal biology is not fully appreciated. This has been the case due to the lack of the appropriate techniques and approaches. Heterogeneity can arise from alternative use and differential content of protein and RNA constituents, as well as from post-transcriptional and post-translational modifications. In the few examples we have, it is apparent that ribosomal heterogeneity offers an additional level and potential for gene expression regulation and might be a way towards tuning metabolism, stress, and growth programs to external and internal stimuli and needs. Here, we introduce ribosome biogenesis and discuss ribosomal heterogeneity in various reported occasions. We conclude that a systematic approach in multiple organisms will be needed to delineate this biological phenomenon and its contributions to growth, aging, and disease. Finally, we discuss ribosome mutations and their roles in disease.
Collapse
Affiliation(s)
- Rowshan Ara Islam
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
8
|
Sills ES, Wood SH. Epigenetics, ovarian cell plasticity, and platelet-rich plasma: Mechanistic theories. REPRODUCTION & FERTILITY 2022; 3:C44-C51. [PMID: 36255031 PMCID: PMC9782453 DOI: 10.1530/raf-22-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Ovarian platelet-rich plasma (PRP) is claimed to restore the fertility potential by improving reserve, an effect perhaps mediated epigenetically by platelet-discharged regulatory elements rather than gonadotropin-activated G-protein coupled receptors, as with stimulated in vitro fertilization (IVF). The finding that fresh activated platelet releasate includes factors able to promote developmental signaling networks necessary to enable cell pluripotency tends to support this theory. The mechanistic uncertainty of intraovarian PRP notwithstanding, at least two other major challenges confront this controversial intervention. The first challenge is to clarify how perimenopausal ovarian function is reset to levels consistent with ovulation. Perhaps a less obvious secondary problem is to confine this renewal such that any induced recalibration of cellular plasticity is kept within acceptable physiologic bounds. Thus, any 'drive' to ovarian rejuvenation must incorporate both accelerator and brake. Ovarian aging may be best viewed as a safeguard against pathologic overgrowth, where senescence operates as an evolved tumor-suppression response. While most ovary cells reach the close of their metabolic life span with low risk for hypertrophy, enhanced lysosomal activity and the proinflammatory 'senescence-associated secretory phenotype' usually offsets this advantage over time. But is recovery of ovarian fitness possible, even if only briefly prior to IVF? Alterations in gap junctions, bio-conductive features, and modulation of gene regulatory networks after PRP use in other tissues are discussed here alongside early data reported from reproductive medicine.
Collapse
Affiliation(s)
- E Scott Sills
- Office for Reproductive Research, Center for Advanced Genetics/FertiGen, San Clemente, California, USA,Regenerative Biology Group, Fertility Reserve Bank San Clemente, California, USA
| | | |
Collapse
|