1
|
Di Risola D, Laurenti D, Ferraro F, Ciogli A, Manetto S, Gazzilli Y, Federico R, Francioso A, Mosca L, Mattioli R. Spontaneous Reaction of Oleacein and Oleocanthal with Primary Amines: A Biochemical Perspective. Molecules 2025; 30:1645. [PMID: 40286248 PMCID: PMC11990156 DOI: 10.3390/molecules30071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Oleacein (Olea) and Oleocanthal (Oleo) are two phenolic compounds found in olive oil. Cell and animal studies have shown these two compounds can modulate inflammation, cancer, and neurodegenerative diseases. Unfortunately, the study of the pharmacokinetics of these two compounds appears difficult due to their high reactivity with primary amines. Indeed, the presence of primary amines in culture media and biological fluids raises the question as to whether the observed biological effects are attributable to the parent compounds or to their amine derivatives. In the present work, we investigated the adduct formation between Olea or Oleo and tris(hydroxymethyl)aminomethane (Tris), a well-known primary amine used primarily as a buffer system, showing that the reaction kinetics were extremely rapid. In addition, we assessed whether the newly formed Tris adducts, i.e., Olea-Tris and Oleo-Tris, retained their antioxidant capacity by means of the ABTS and DPPH radical scavenging assays, showing that their activity was partially maintained. Finally, we evaluated the anti-inflammatory activity of these adducts on murine BV-2 microglial cells stimulated with lipopolysaccharide (LPS) and kept in an amine-free culture medium, showing how the biological response varied as the compound was degraded. Taken together, these data demonstrate that the biological effects reported in the literature are mainly due to the amino-derivatives of Olea and Oleo rather than the polyphenols derived from their breakdown (tyrosol and hydroxytyrosol).
Collapse
Affiliation(s)
- Daniel Di Risola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, pl.e Aldo Moro 5, 00185 Rome, Italy; (D.D.R.); (D.L.); (F.F.)
| | - Davide Laurenti
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, pl.e Aldo Moro 5, 00185 Rome, Italy; (D.D.R.); (D.L.); (F.F.)
| | - Francesca Ferraro
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, pl.e Aldo Moro 5, 00185 Rome, Italy; (D.D.R.); (D.L.); (F.F.)
| | - Alessia Ciogli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, pl.e Aldo Moro 5, 00185 Rome, Italy; (A.C.); (S.M.); (Y.G.)
| | - Simone Manetto
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, pl.e Aldo Moro 5, 00185 Rome, Italy; (A.C.); (S.M.); (Y.G.)
| | - Yuri Gazzilli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, pl.e Aldo Moro 5, 00185 Rome, Italy; (A.C.); (S.M.); (Y.G.)
| | - Rodolfo Federico
- Active-Italia S.r.l., Via delle Terme Deciane 10, 00153 Rome, Italy;
| | - Antonio Francioso
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Luciana Mosca
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, pl.e Aldo Moro 5, 00185 Rome, Italy; (D.D.R.); (D.L.); (F.F.)
| | - Roberto Mattioli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, pl.e Aldo Moro 5, 00185 Rome, Italy; (D.D.R.); (D.L.); (F.F.)
| |
Collapse
|
2
|
Noce B, Marchese S, Massari M, Lambona C, Reis J, Fiorentino F, Raucci A, Fioravanti R, Castelôa M, Mormino A, Garofalo S, Limatola C, Basile L, Gottinger A, Binda C, Mattevi A, Mai A, Valente S. Design of Benzyl-triazolopyrimidine-Based NADPH Oxidase Inhibitors Leads to the Discovery of a Potent Dual Covalent NOX2/MAOB Inhibitor. J Med Chem 2025; 68:6292-6311. [PMID: 40042998 PMCID: PMC11956017 DOI: 10.1021/acs.jmedchem.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
NADPH oxidases (NOXs) are enzymes dedicated to reactive oxygen species (ROS) production and are implicated in cancer, neuroinflammation, and neurodegenerative diseases. VAS2870 is a covalent inhibitor of mainly NOX2 and NOX5. It alkylates a conserved active-site cysteine, blocking productive substrate binding. To enhance potency and selectivity toward NOXs, we conducted some chemical modifications, leading to the discovery of compound 9a that preferentially inhibits NOX2 with an IC50 of 0.155 μM, and only upon its preactivation. We found that 9a, bearing a pargyline moiety, is also able to selectively inhibit MAOB over MAOA (465-fold) with an IC50 of 0.182 μM, being the first-in-class dual NOX2/MAOB covalent inhibitor. Tested in the BV2 microglia neuroinflammation model, 9a decreased ROS production and downregulated proinflammatory cytokines as iNOS, IL-1β, and IL-6 expression more efficiently than the single target inhibitors (rasagiline for MAOB and VAS2870 for NOXs) but also, more importantly, than their combination.
Collapse
Affiliation(s)
- Beatrice Noce
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Sara Marchese
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Marta Massari
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Joana Reis
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Alessia Raucci
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Rossella Fioravanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Mariana Castelôa
- CIQUP-IMS/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Alessandro Mormino
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Stefano Garofalo
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Cristina Limatola
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Lorenzo Basile
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Andrea Gottinger
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Claudia Binda
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
3
|
Fiorentino F, Mai A, Rotili D. The role of structural biology in the design of sirtuin activators. Curr Opin Struct Biol 2023; 82:102666. [PMID: 37542908 DOI: 10.1016/j.sbi.2023.102666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Sirtuins are NAD+-dependent protein lysine deacylases and mono-ADP-ribosylases whose activity regulates different pathways, including DNA damage repair, cell survival and metabolism, reactive oxygen species (ROS) detoxification, inflammation, cardiac function, and neuronal signaling. Considering the beneficial effects of specific sirtuin isoforms on health and lifespan, the past two decades have seen a mounting interest in the development of sirtuin activators. The availability of enzyme-activator co-crystal structures has proven significant throughout the years for elucidating the mechanisms of action of activators and designing more potent and selective molecules. In this review, we highlight the most interesting examples of sirtuin activators and provide comprehensive coverage of the role that structural biology played in their discovery and characterization.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Fiorentino F, Rotili D, Mai A. Native mass spectrometry-directed drug discovery: Recent advances in investigating protein function and modulation. Drug Discov Today 2023; 28:103548. [PMID: 36871843 DOI: 10.1016/j.drudis.2023.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Native mass spectrometry (nMS) is a biophysical method for studying protein complexes and can provide insights into subunit stoichiometry and composition, protein-ligand, and protein-protein interactions (PPIs). These analyses are made possible by preserving non-covalent interactions in the gas phase, thereby allowing the analysis of proteins in their native state. Consequently, nMS has been increasingly applied in early drug discovery campaigns for the characterization of protein-drug interactions and the evaluation of PPI modulators. Here, we discuss recent developments in nMS-directed drug discovery and provide a timely perspective on the possible applications of this technology in drug discovery.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|