1
|
Wu Q, Yang M, Yang Y, Iqbal A, Zhou L. Assessment of bisulfite sequencing alignment tools for whole genome analysis in plants. Int J Biol Macromol 2025; 305:140940. [PMID: 39952492 DOI: 10.1016/j.ijbiomac.2025.140940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
DNA methylation, a key component of epigenetic regulation, is essential for preserving normal cellular functions, supporting plant growth, and facilitating development and responses to stress. Whole genome bisulfite sequencing (WGBS) is the definitive method for studying DNA methylation and is extensively used in functional genomics research across both animal and plant species. While various analysis tools have been created for WGBS, a thorough evaluation of their performance in analyzing plant data remains lacking. This study provides a comprehensive assessment of six widely used alignment methods (Abismal, Bismark-his2, BSSeeker2-bwt2-local, BSSeeker2-bwt2-e2e, Bismark-bwt2-e2e, and BSMAP) across four DNA methylation analysis tools. The evaluation encompassed aspects such as runtime efficiency, memory resource utilization, alignment quality, and identification of methylation sites by analyzing DNA methylation data from three major crops: Arabidopsis thaliana, Oryza sativa, and Glycine max. The results indicated that although BSMAP required larger memory requirements, it exhibited higher efficiency in terms of running speed, particularly when dealing with large-scale genomic data. Furthermore, BSMAP showed excellent performance in alignment quality and identification of methylated sites, ensuring the reliability and precision of the results. The study highlights the importance of researchers carefully selecting alignment tools and considering factors like available computational resources, specific research needs, and the balance between processing speed and memory usage. This work offers valuable analytical guidance for scientists engaged in DNA methylation studies plants, contributing to improved research efficiency and result reliability. 1 t holds significant scientific importance for a deeper analysis of DNA methylation in plant biology.
Collapse
Affiliation(s)
- Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Mengdi Yang
- Qionghai Tropical Crops Service Center, Qionghai 571400, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| |
Collapse
|
2
|
Hum M, Lee ASG. DNA methylation in breast cancer: early detection and biomarker discovery through current and emerging approaches. J Transl Med 2025; 23:465. [PMID: 40269936 PMCID: PMC12020129 DOI: 10.1186/s12967-025-06495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
Breast cancer remains one of the most common cancers in women worldwide. Early detection is critical for improving patient outcomes, yet current screening methods have limitations. Therefore, there is a pressing need for more sensitive and specific approaches to detect breast cancer in its earliest stages. Liquid biopsy has emerged as a promising non-invasive method for early cancer detection and management. DNA methylation, an epigenetic alteration that often precedes genetic changes, has been observed in precancerous or early cancer stages, making it a valuable biomarker. This review explores the role of DNA methylation in breast cancer and its potential for developing blood-based tests. We discuss advancements in DNA methylation detection methods, recent discoveries of potential DNA methylation biomarkers from both single-omics and multi-omics integration studies, and the role of machine learning in enhancing diagnostic accuracy. Challenges and future directions are also addressed. Although challenges remain, advances in multi-omics integration and machine learning continue to enhance the clinical potential of methylation-based biomarkers. Ongoing research is crucial to further refine these approaches and improve early detection and patient outcomes.
Collapse
Affiliation(s)
- Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
3
|
Bacares R, Soslow R, Olvera N, Levine DA, Zhang L. A Rapid and Reliable Test for BRCA1 Promoter Hypermethylation in Paraffin Tissue Using Pyrosequencing. Diagnostics (Basel) 2025; 15:601. [PMID: 40075848 PMCID: PMC11898801 DOI: 10.3390/diagnostics15050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Ovarian cancers harboring inactivating mutations in BRCA1 or BRCA2 demonstrate increased sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPis). BRCA1 promoter methylation could serve as a more precise biomarker for therapy response, as it reflects a dynamic mechanism, compared with genomic scarring, which remains persistent and lacks real-time prediction of sensitivity after prior lines of treatment. Additionally, the BRCA1 promoter methylation may provide a more precise biomarker for identifying homologous recombination deficiency compared to genomic scars. In this study, we describe the validation of a pyrosequencing method to assess BRCA1 promoter methylation status. Methods: Tumor DNA from high-grade serous ovarian carcinoma was tested targeting 11 CpG sites adjacent to the BRCA1 transcription start site. All cases had concordant results compared with TCGA methylation data or real-time PCR results. To determine the sensitivity of this assay, we performed a dilution series experiment using seven mixtures of methylated DNA and unmethylated genomic DNA (100%, 50%, 25%, 12.5%, 6.25%, 3.125%, and 1.56%). Results: We observed a high degree of correlation (R2 = 0.9945) between predicted and observed results. Intra- and inter-run reproducibility was established by performing six cases in triplicate in the same run and in three different runs. Conclusions: By applying 10% as the cutoff for detection of methylation, the PyroMark Q24 pyrosequencing assay demonstrated 100% concordance across all the ovarian cancer cases included in this validation. This assay has been approved by the New York State Department of Health as a laboratory-specific assay for clinical use.
Collapse
Affiliation(s)
- Ruben Bacares
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.B.); (R.S.)
| | - Robert Soslow
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.B.); (R.S.)
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Narciso Olvera
- Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (N.O.)
- Laura and Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Douglas A. Levine
- Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (N.O.)
- Global Clinical Development, Merck Research Laboratories, Rahway, NJ 07065, USA
| | - Liying Zhang
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.B.); (R.S.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Pinheiro RF, Goes JVC, Sampaio LR, Germano de Oliveira RT, Lima SCS, Furtado CLM, de Paula Borges D, Costa MB, da Silva Monte C, Minete NF, Magalhães SMM, Ribeiro Junior HL. The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm. DNA Repair (Amst) 2025; 146:103803. [PMID: 39874624 DOI: 10.1016/j.dnarep.2024.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening. Results showed that XPA had higher methylation in low-risk MDS compared to high-risk MDS. For double-strand repair genes, ATM displayed higher methylation in patients who transformed to AML (p = 0.016). ATM gene expression was downregulated in MDS compared to controls (p = 0.042). When patients were classified according to the WHO 2022 guidelines, ATM expression progressively decreased from low-risk subtypes (e.g., Hypoplastic MDS) to high-risk MDS and AML. Patients who transformed to AML had a higher 5mC/5hmC ratio compared to those who didn't (p = 0.045). Additionally, poor cytogenetic risk patients had higher tissue methylation scores than those with good risk (p = 0.035). Analysis using the cBioPortal platform identified ATM as the most frequently mutated DNA repair gene, with various mutations, such as frameshift and missense, most of which were classified as oncogenic. The findings suggest that ATM is frequently silenced or downregulated in MDS due to methylation or mutations, contributing to the progression to AML. This highlights ATM's potential role in the disease's advancement and as a target for future therapeutic strategies.
Collapse
Affiliation(s)
- Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil.
| | - João Vitor Caetano Goes
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil
| | - Leticia Rodrigues Sampaio
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Cristiana Libardi Miranda Furtado
- Graduate Program in Medical Science, Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marilia Braga Costa
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Cristiane da Silva Monte
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Natalia Feitosa Minete
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Howard Lopes Ribeiro Junior
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
5
|
Zhang B, Li J, Yu W. Integration of CRISPR/dCas9-Based methylation editing with guide positioning sequencing identifies dynamic changes of mrDEGs in breast cancer progression. Cell Mol Life Sci 2025; 82:46. [PMID: 39833630 PMCID: PMC11747065 DOI: 10.1007/s00018-024-05562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Dynamic changes in DNA methylation are prevalent during the progression of breast cancer. However, critical alterations in aberrant methylation and gene expression patterns have not been thoroughly characterized. Here, we utilized guide positioning sequencing (GPS) to conduct whole-genome DNA methylation analysis in a unique human breast cancer progression model: MCF10 series of cell lines (representing benign/normal, atypical hyperplasia, and metastatic carcinoma). By integrating with mRNA-seq and matched clinical expression data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), six representative methylation-related differentially expressed genes (mrDEGs) were identified, including CAVIN2, ARL4D, DUSP1, TENT5B, P3H2, and MMP28. To validate our findings, we independently developed and optimized the dCas9-DNMT3L-DNMT3A system, achieving a high efficiency with a 98% increase in methylation at specific sites. DNA methylation levels significantly increased for the six genes, with CAVIN2 at 67.75 ± 1.05%, ARL4D at 53.29 ± 6.32%, DUSP1 at 57.63 ± 8.46%, TENT5B at 44.00 ± 5.09%, P3H2 at 58.50 ± 3.90%, and MMP28 at 49.60 ± 5.84%. RT-qPCR confirmed an inverse correlation between increased DNA methylation and gene expression. Most importantly, we mimicked tumor progression in vitro, demonstrating that transcriptional silencing of the TENT5B promotes cell proliferation in MCF10A cells owing to the crosstalk between hypermethylation and histone deacetylation. This study unveils the practical implications of DNA methylation dynamics of mrDEGs in reshaping epigenomic features during breast cancer malignant progression through integrated data analysis of the methylome and transcriptome. The application of the CRISPR/dCas9-based methylation editing technique elucidates the regulatory mechanisms and functional roles of individual genes within the DNA methylation signature, providing valuable insights for understanding breast cancer pathogenesis and facilitating potential therapeutic approaches in epigenome editing for patients with breast cancer.
Collapse
Affiliation(s)
- Baolong Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenqiang Yu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Kim H, Chu J, Do IG, Lee YP, Kim HK, Yang Y, Kwon J, Lee KH, Batochir C, Jo E, Kim KR, Han HS. Novel diagnostic biomarkers for pancreatic cancer: assessing methylation status with epigenetic-specific peptide nucleic acid and KRAS mutation in cell-free DNA. Front Oncol 2024; 14:1395473. [PMID: 39035743 PMCID: PMC11257850 DOI: 10.3389/fonc.2024.1395473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Purpose Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor with a poor prognosis that poses challenges for diagnosis using traditional tissue-based techniques. DNA methylation alterations have emerged as potential and promising biomarkers for PDAC. In this study, we aimed to assess the diagnostic potential of a novel DNA methylation assay based on epigenetic-specific peptide nucleic acid (Epi-sPNA) in both tissue and plasma samples for detecting PDAC. Materials and methods The study involved 46 patients with PDAC who underwent surgical resection. Epi-TOP pancreatic assay was used to detect PDAC-specific epigenetic biomarkers. The Epi-sPNA allowed accurate and rapid methylation analysis without bisulfite sample processing. Genomic DNA extracted from paired normal pancreatic and PDAC tissues was used to assess the diagnostic efficacy of epigenetic biomarkers for PDAC. Subsequent validation was conducted on cell-free DNA (cfDNA) extracted from plasma samples, with 10 individuals represented in each group: PDAC, benign pancreatic cystic neoplasm, and healthy control. Results The combination of seven epigenetic biomarkers (HOXA9, TWIST, WT1, RPRM, BMP3, NPTX2, and BNC1) achieved 93.5% sensitivity and 96.7% specificity in discerning normal pancreatic from PDAC tissues. Plasma cfDNA, analyzed using these markers and KRAS mutations, exhibited a substantial 90.0% sensitivity, 95.0% specificity, and an overall 93.3% accuracy for discriminating PDAC. Notably, cancer antigen 19-9 and carcinoembryonic antigen both had an accuracy of 90.0%. Conclusion Our study suggests that analyzing seven differentially methylated genes with KRAS mutations in cfDNA using the novel Epi-TOP pancreatic assay is a potential blood-based biomarker for the diagnosis of PDAC.
Collapse
Affiliation(s)
- Hongsik Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Jinah Chu
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Pyo Lee
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yaewon Yang
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Jihyun Kwon
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Ki Hyeong Lee
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | | | - Eunji Jo
- Seasun Biomaterials, Daejeon, Republic of Korea
| | - Kyo Rim Kim
- Seasun Biomaterials, Daejeon, Republic of Korea
| | - Hye Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| |
Collapse
|
7
|
Silva FFVE, Ballini A, Caponio VCA, Pérez-Sayáns M, Cortés MG, Rojo-Álvarez LI, García-García A, Suaréz-Peñaranda JM, Di Domenico M, Padín-Iruegas ME. Insights into MLH1 Methylation in Endometrial Adenocarcinoma through Pyrosequencing Analysis: A Retrospective Observational Study. Cancers (Basel) 2024; 16:2119. [PMID: 38893238 PMCID: PMC11171209 DOI: 10.3390/cancers16112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Background: In cancer care, the MLH1 gene is crucial for DNA mismatch repair (MMR), serving as a vital tumor suppressor. Evaluating MLH1 protein expression status, followed by analysis of MLH1 promoter methylation, has become a key diagnostic and prognostic approach. Our study investigates the complex link between MLH1 methylation and prognosis in endometrial adenocarcinoma (EA) patients. Methodology: MLH1 methylation status was accessed by a Pyrosequencing (PSQ) assay. Qualitative positivity for methylation was established if it exceeded the 11% cut-off; as well, a quantitative methylation analysis was conducted to establish correlations with clinicopathological data, relapse-free survival, and disease-free survival. Results: Our study revealed that 33.3% of patients without MLH1 methylation experienced relapses, surpassing the 23.3% in patients with methylation. Furthermore, 16.7% of patients without methylation succumbed to death, with a slightly higher rate of 17.6% in methylated patients. Qualitative comparisons highlighted that the mean methylation rate in patients experiencing relapse was 35.8%, whereas in those without relapse, it was 42.2%. This pattern persisted in disease-specific survival (DSS), where deceased patients exhibited a higher mean methylation level of 49.1% compared to living patients with 38.8%. Conclusions: Our findings emphasize the efficacy of PSQ for evaluating MLH1 methylation. While unmethylation appears to be associated with a higher relapse rate, the survival rate does not seem to be influenced by methylation. Quantitative percentages suggest that elevated MLH1 methylation is linked to relapse and mortality, though a study with a larger sample size would be essential for statistically significant results.
Collapse
Affiliation(s)
- Fábio França Vieira e Silva
- Department of Medicine and Dentistry, University of Santiago de Compostela, San Francisco Street, s/n, 15782 Santiago de Compostela, Spain; (F.F.V.e.S.); (M.P.-S.); (A.G.-G.); (J.M.S.-P.)
- Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela University Clinical Hospital, University of Santiago de Compostela, Choupana Street, s/n, 15706 Santiago de Compostela, Spain; (M.G.C.); (L.I.R.-Á.); (M.E.P.-I.)
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio, 7, 80138 Naples, Italy;
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio, 7, 80138 Naples, Italy;
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli, 48, 71122, Foggia, Italy;
| | - Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli, 48, 71122, Foggia, Italy;
| | - Mario Pérez-Sayáns
- Department of Medicine and Dentistry, University of Santiago de Compostela, San Francisco Street, s/n, 15782 Santiago de Compostela, Spain; (F.F.V.e.S.); (M.P.-S.); (A.G.-G.); (J.M.S.-P.)
- Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela University Clinical Hospital, University of Santiago de Compostela, Choupana Street, s/n, 15706 Santiago de Compostela, Spain; (M.G.C.); (L.I.R.-Á.); (M.E.P.-I.)
| | - Marina Gándara Cortés
- Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela University Clinical Hospital, University of Santiago de Compostela, Choupana Street, s/n, 15706 Santiago de Compostela, Spain; (M.G.C.); (L.I.R.-Á.); (M.E.P.-I.)
| | - Laura Isabel Rojo-Álvarez
- Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela University Clinical Hospital, University of Santiago de Compostela, Choupana Street, s/n, 15706 Santiago de Compostela, Spain; (M.G.C.); (L.I.R.-Á.); (M.E.P.-I.)
| | - Abel García-García
- Department of Medicine and Dentistry, University of Santiago de Compostela, San Francisco Street, s/n, 15782 Santiago de Compostela, Spain; (F.F.V.e.S.); (M.P.-S.); (A.G.-G.); (J.M.S.-P.)
- Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela University Clinical Hospital, University of Santiago de Compostela, Choupana Street, s/n, 15706 Santiago de Compostela, Spain; (M.G.C.); (L.I.R.-Á.); (M.E.P.-I.)
| | - José Manuel Suaréz-Peñaranda
- Department of Medicine and Dentistry, University of Santiago de Compostela, San Francisco Street, s/n, 15782 Santiago de Compostela, Spain; (F.F.V.e.S.); (M.P.-S.); (A.G.-G.); (J.M.S.-P.)
- Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela University Clinical Hospital, University of Santiago de Compostela, Choupana Street, s/n, 15706 Santiago de Compostela, Spain; (M.G.C.); (L.I.R.-Á.); (M.E.P.-I.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio, 7, 80138 Naples, Italy;
| | - María Elena Padín-Iruegas
- Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela University Clinical Hospital, University of Santiago de Compostela, Choupana Street, s/n, 15706 Santiago de Compostela, Spain; (M.G.C.); (L.I.R.-Á.); (M.E.P.-I.)
- Human Anatomy and Embriology Area, Departament of Funcional Biology and Health Sciences, University of Vigo, Lagoas-Marcosende, s/n, 36310 Vigo, Spain
| |
Collapse
|
8
|
Zhang X, Gong H, Zhao Y, Wu Y, Cheng J, Song Y, Wang B, Qin Y, Sun M. Bisphenol S impairs mitochondrial function by targeting Myo19/oxidative phosphorylation pathway contributing to axonal and dendritic injury. ENVIRONMENT INTERNATIONAL 2024; 186:108643. [PMID: 38615544 DOI: 10.1016/j.envint.2024.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Exposure to bisphenol S (BPS) is known to adversely affect neuronal development. As pivotal components of neuronal polarization, axons and dendrites are indispensable structures within neurons, crucial for the maintenance of nervous system function. Here, we investigated the impact of BPS exposure on axonal and dendritic development both in vivo and in vitro. Our results revealed that exposure to BPS during pregnancy and lactation led to a reduction in the complexity, density, and length of axons and dendrites in the prefrontal cortex (PFC) of offspring. Employing RNA sequencing technology to elucidate the underlying mechanisms of axonal and dendritic damage induced by BPS, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted a significant alteration in the oxidative phosphorylation (OXPHOS) pathway, essential for mitochondrial function. Subsequent experiments demonstrate BPS-induced impairment in mitochondrial function, including damaged morphology, decreased adenosine triphosphate (ATP) and superoxide dismutase (SOD) levels, and increased reactive oxygen species and malondialdehyde (MDA). These alterations coincided with the downregulated expression of OXPHOS pathway-related genes (ATP6V1B1, ATP5K, NDUFC1, NDUFC2, NDUFA3, COX6B1) and Myosin 19 (Myo19). Notably, Myo19 overexpression restored the BPS-induced mitochondrial dysfunction by alleviating the inhibition of OXPHOS pathway. Consequently, this amelioration was associated with a reduction in BPS-induced axonal and dendritic injury observed in cultured neurons of the PFC.
Collapse
Affiliation(s)
- Xing Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhao
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yangna Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jihan Cheng
- The First Clinical Medical School, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
9
|
Shi D, Zhou X, Cai L, Wei X, Zhang L, Sun Q, Zhou F, Sun L. Placental DNA methylation analysis of selective fetal growth restriction in monochorionic twins reveals aberrant methylated CYP11A1 gene for fetal growth restriction. FASEB J 2023; 37:e23207. [PMID: 37732623 DOI: 10.1096/fj.202300742r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Fetal growth restriction (FGR) is associated with increased susceptibility to perinatal morbidity and mortality. Evidence suggests that epigenetic changes play critical roles in the regulation of fetal growth. We sought to present a comprehensive analysis of the associations between placental DNA methylation and selective fetal growth restriction (sFGR), which is a severe complication of monochorionic twin pregnancies, characterized by one fetus experiencing restricted growth. Genome-wide methylation analysis was performed on 24 placental samples obtained from 12 monochorionic twins with sFGR (Cohort 1) using Illumina Infinium MethylationEPIC BeadChip. Integrative analysis of our EPIC data and two previous placental methylation studies of sFGR (a total of 30 placental samples from 15 sFGR twins) was used to identify convincing differential promoter methylation. Validation analysis was performed on the placentas from 15 sFGR twins (30 placental samples), 15 FGR singletons, and 14 control singletons (Cohort 2) using pyrosequencing, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry (IHC). A globe shift toward hypomethylation was identified in the placentas of growth-restricted fetuses compared with the placentas of normal fetuses in monochorionic twins, including 5625 hypomethylated CpGs and 452 hypermethylated CpGs, especially in the regions of CpG islands, gene-body and promoters. The analysis of pathways revealed dysregulation primarily in steroid hormone biosynthesis, metabolism, cell adhesion, signaling transduction, and immune response. Integrative analysis revealed a differentially methylated promoter region in the CYP11A1 gene, encoding a rate-limiting enzyme of steroidogenesis converting cholesterol to pregnenolone. The CYP11A1 gene was validated to have hypomethylation and higher mRNA expression in sFGR twins and FGR singletons. In conclusion, our findings suggested that the changes in placental DNA methylation pattern in sFGR may have functional implications for differentially methylated genes and regulatory regions. The study provides reliable evidence for identifying abnormally methylated CYP11A1 gene in the placenta of sFGR.
Collapse
Affiliation(s)
- Dayuan Shi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyao Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luyao Cai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xing Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luye Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianqian Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenhe Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luming Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|