1
|
Sabirova S, Sharapova G, Budyukova A, Gomzikova M, Brichkina A, Barlev NA, Rizvanov A, Markov N, Simon HU. Comprehensive analysis of cellular metrics: From proliferation to mitochondrial membrane potential and cell death in a single sample. Cell Death Discov 2025; 11:119. [PMID: 40128566 PMCID: PMC11933298 DOI: 10.1038/s41420-025-02391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Changes in cell number during in vitro experiments and pharmacological screenings primarily depend on two factors: cell death and proliferation. The dynamics of these processes determine whether cell populations expand and accumulate or, conversely, decrease over time. Understanding the biological mechanisms governing these changes is crucial for deciphering the mode of action of any pharmacological or genetic treatment in fundamental research and pre-clinical trials. In this context, we introduce a robust and efficient flow cytometry-based methodology that enables comprehensive analysis of key cellular parameters that indicate changes in cell numbers. This approach encompasses the assessment of cell count along with critical maintenance parameters including proliferation, cell cycle dynamics, apoptosis, cell permeability, and mitochondrial depolarization. These parameters are intricately linked, offering a detailed view of the cellular state. The described methodology is versatile and adaptable for analyzing various cell types, whether at steady state or in response to treatments. To develop this workflow, we integrated and optimised multiple flow cytometry-based stainings such as annexin V, propidium iodide, bromodeoxyuridine, CellTrace Violet, and JC-1 into a unified protocol. This article offers a detailed, step-by-step guide to the entire method, covering aspects such as timing, sample preparation techniques, and the reagents used. Additionally, it includes examples of the data that can be obtained with this technique and illustrates its multiparametric visualization. Collectively, this methodology facilitates the rapid acquisition of up to eight different parameters from a single sample in one experiment.
Collapse
Affiliation(s)
- Sirina Sabirova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan, Russia
| | - Gulnaz Sharapova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aida Budyukova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan, Russia
| | - Anna Brichkina
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Nick A Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
| | - Hans-Uwe Simon
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany.
| |
Collapse
|
2
|
Chen S, Zhang X, Basappa B, Zhu T, Pandey V, Lobie PE. TFF3 facilitates dormancy of anti-estrogen treated ER+ mammary carcinoma. COMMUNICATIONS MEDICINE 2025; 5:45. [PMID: 39984660 PMCID: PMC11845601 DOI: 10.1038/s43856-024-00710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/13/2024] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Tumor dormancy is a substantial clinical obstacle in treatment of estrogen receptor positive mammary carcinoma (ER+MC), contributing to drug resistance, metastatic outgrowth, relapse, and consequent mortality. METHODS Preclinical models mimicking clinical anti-estrogen-induced ER+MC dormancy were generated in vivo. Function and a mechanism-based combination treatment were determined in the generated dormancy-like models in vitro, ex vivo, and in vivo. RESULTS The dormancy models display molecular features of dormancy and tumor mass and cellular dormancy with associated clinical dormancy behavior. Both serum and cancer tissue expression of Trefoil factor 3 (TFF3) are identified as prognostic indicators of dormant ER+MC with TFF3 functioning as an epigenetically regulated driver of dormancy-associated behaviors. BCL2-dependent pro-survival functions of TFF3 coupled with enhanced attributes of stemness designates TFF3 as an actionable target. Moreover, combination screening of a TFF3 small-molecule-inhibitor (AMPC) with compounds used clinically to treat anti-estrogen-resistant ER+MC identifies strong synergism between AMPC and CDK4/6 inhibitors in the dormancy-like models. The combination results in concomitant suppression of CCND1 expression and CDK4/6 kinase activity to decrease RB phosphorylation, with reduced BCL2 expression, leading to both ER + MC cell cycle arrest and apoptosis. The combined TFF3-CDK4/6 inhibition impedes metastatic outgrowth and ameliorates host animal survival in the dormancy-like models, producing a complete response in a percentage of animals. CONCLUSIONS Hence, in vivo models of anti-estrogen induced dormancy of ER+MC generated herein, identify TFF3 as a driver of this process. The combined inhibition of TFF3 and CDK4/6 may potentially alleviate the clinical challenges posed by anti-estrogen-induced dormancy in ER+MC.
Collapse
Affiliation(s)
- Shu Chen
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, PR China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, PR China
| | - Xi Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, PR China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, PR China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, PR China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, PR China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, PR China.
| | - Peter E Lobie
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, PR China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, PR China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, PR China.
| |
Collapse
|
3
|
Khan F, Pitstick L, Lara J, Ventrella R. Rho-Associated Protein Kinase Activity Is Required for Tissue Homeostasis in the Xenopus laevis Ciliated Epithelium. J Dev Biol 2024; 12:17. [PMID: 38921484 PMCID: PMC11204898 DOI: 10.3390/jdb12020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Lung epithelial development relies on the proper balance of cell proliferation and differentiation to maintain homeostasis. When this balance is disturbed, it can lead to diseases like cancer, where cells undergo hyperproliferation and then can undergo migration and metastasis. Lung cancer is one of the deadliest cancers, and even though there are a variety of therapeutic approaches, there are cases where treatment remains elusive. The rho-associated protein kinase (ROCK) has been thought to be an ideal molecular target due to its role in activating oncogenic signaling pathways. However, in a variety of cases, inhibition of ROCK has been shown to have the opposite outcome. Here, we show that ROCK inhibition with y-27632 causes abnormal epithelial tissue development in Xenopus laevis embryonic skin, which is an ideal model for studying lung cancer development. We found that treatment with y-27632 caused an increase in proliferation and the formation of ciliated epithelial outgrowths along the tail edge. Our results suggest that, in certain cases, ROCK inhibition can disturb tissue homeostasis. We anticipate that these findings could provide insight into possible mechanisms to overcome instances when ROCK inhibition results in heightened proliferation. Also, these findings are significant because y-27632 is a common pharmacological inhibitor used to study ROCK signaling, so it is important to know that in certain in vivo developmental models and conditions, this treatment can enhance proliferation rather than lead to cell cycle suppression.
Collapse
Affiliation(s)
- Fayhaa Khan
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (F.K.); (J.L.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (F.K.); (J.L.)
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
4
|
Zheng S, Liu T, Chen M, Sun F, Fei Y, Chen Y, Tian X, Wu Z, Zhu Z, Zheng W, Wang Y, Wang W. Morroniside induces cardiomyocyte cell cycle activity and promotes cardiac repair after myocardial infarction in adult rats. Front Pharmacol 2024; 14:1260674. [PMID: 38273822 PMCID: PMC10808748 DOI: 10.3389/fphar.2023.1260674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Acute myocardial infarction (AMI) is characterized by the loss of cardiomyocytes, which impairs cardiac function and eventually leads to heart failure. The induction of cardiomyocyte cell cycle activity provides a new treatment strategy for the repair of heart damage. Our previous study demonstrated that morroniside exerts cardioprotective effects. This study investigated the effects and underlying mechanisms of action of morroniside on cardiomyocyte cell cycle activity and cardiac repair following AMI. Methods: Neonatal rat cardiomyocytes (NRCMs) were isolated and exposed to oxygen-glucose deprivation (OGD) in vitro. A rat model of AMI was established by ligation of the left anterior descending coronary artery (LAD) in vivo. Immunofluorescence staining was performed to detect newly generated cardiomyocytes. Western blotting was performed to assess the expression of cell cycle-related proteins. Electrocardiography (ECG) was used to examine pathological Q waves. Masson's trichrome and wheat germ agglutinin (WGA) staining assessed myocardial fibrosis and hypertrophy. Results: The results showed that morroniside induced cardiomyocyte cell cycle activity and increased the levels of cell cycle proteins, including cyclin D1, CDK4, cyclin A2, and cyclin B1, both in vitro and in vivo. Moreover, morroniside reduced myocardial fibrosis and remodeling. Discussion: In conclusion, our study demonstrated that morroniside stimulates cardiomyocyte cell cycle activity and cardiac repair in adult rats, and that these effects may be related to the upregulation of cell cycle proteins.
Collapse
Affiliation(s)
- Songyang Zheng
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Mengqi Chen
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yihuan Fei
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yanxi Chen
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Xin Tian
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zheng Wu
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zixin Zhu
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenrong Zheng
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yufeng Wang
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
5
|
Grabarska A, Luszczki JJ, Gawel K, Kukula-Koch W, Juszczak M, Slawinska-Brych A, Adamczuk G, Dmoszynska-Graniczka M, Kosheva N, Rzeski W, Stepulak A. Heterogeneous Cellular Response of Primary and Metastatic Human Gastric Adenocarcinoma Cell Lines to Magnoflorine and Its Additive Interaction with Docetaxel. Int J Mol Sci 2023; 24:15511. [PMID: 37958494 PMCID: PMC10647589 DOI: 10.3390/ijms242115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Gastric cancer is the most common cancer and remains the leading cause of cancer death worldwide. In this study, the anticancer action of magnoflorine isolated via counter-current chromatography from the methanolic extract of Berberis vulgaris root against gastric cancer in models of primary ACC-201 and AGS and metastatic MKN-74 and NCI-N87 cell lines was analyzed. Cell viability and proliferation were tested through the use of MTT and BrdU tests, respectively. Cell cycle progression and apoptosis were evaluated using flow cytometry. The interaction of magnoflorine and docetaxel has been examined through isobolographic analysis. Moreover, potential toxicity was verified in zebrafish in an in vivo model. Gastric cancer cell lines revealed different responses to magnoflorine treatment with regard to viability/proliferation, apoptosis induction and cell cycle inhibition without any undesirable changes in the development of larval zebrafish at the tested concentrations. What is more, magnoflorine in combination with docetaxel produced an additive pharmacological interaction in all studied gastric cancer cell lines, which may suggest a complementary mechanism of action of both compounds. Taken together, these findings provide a foundation for the possibility of magnoflorine as a potential therapeutic approach for gastric cancer and merits further investigation, which may pave the way for clinical uses of magnoflorine.
Collapse
Affiliation(s)
- Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Jarogniew J. Luszczki
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Małgorzata Juszczak
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.J.); (W.R.)
| | - Adrianna Slawinska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | | | - Nataliia Kosheva
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.J.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| |
Collapse
|
6
|
Tottoli EM, Benedetti L, Riva F, Chiesa E, Pisani S, Bruni G, Genta I, Conti B, Ceccarelli G, Dorati R. Electrospun Fibers Loaded with Pirfenidone: An Innovative Approach for Scar Modulation in Complex Wounds. Polymers (Basel) 2023; 15:4045. [PMID: 37896289 PMCID: PMC10610295 DOI: 10.3390/polym15204045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Hypertrophic scars (HTSs) are pathological structures resulting from chronic inflammation during the wound healing process, particularly in complex injuries like burns. The aim of this work is to propose Biofiber PF (biodegradable fiber loaded with Pirfenidone 1.5 w/w), an electrospun advanced dressing, as a solution for HTSs treatment in complex wounds. Biofiber has a 3-day antifibrotic action to modulate the fibrotic process and enhance physiological healing. Its electrospun structure consists of regular well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) fibers (size 2.83 ± 0.46 µm) loaded with Pirfenidone (PF, 1.5% w/w), an antifibrotic agent. The textured matrix promotes the exudate balance through mild hydrophobic wettability behavior (109.3 ± 2.3°), and an appropriate equilibrium between the absorbency % (610.2 ± 171.54%) and the moisture vapor transmission rate (0.027 ± 0.036 g/min). Through its finer mechanical properties, Biofiber PF is conformable to the wound area, promoting movement and tissue oxygenation. These features also enhance the excellent elongation (>500%) and tenacity, both in dry and wet conditions. The ancillary antifibrotic action of PF on hypertrophic scar fibroblast (HSF) for 3 days downregulates the cell proliferation over time and modulates the gene expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) at 48-72 h. After 6 days of treatment, a decrement of α-SMA protein levels was detected, proving the potential of biofiber as a valid therapeutic treatment for HTSs in an established wound healing process.
Collapse
Affiliation(s)
- Erika Maria Tottoli
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy; (L.B.); (G.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Federica Riva
- Department of Public Health, Experimental Medicine and Forensic, Histology and Embryology Unit, University of Pavia, 27100 Pavia, Italy;
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Giovanna Bruni
- Physical-Chemistry Section, Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy; (L.B.); (G.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| |
Collapse
|