1
|
Zhang Y, Zhang M, Leng L, Wu Y, Yang H, Wang L, Liu B, Yang S, Yang Z, Chen S, Song C. Karyotype and genome size analyses for two spiders of the lycosidae family. Front Genet 2025; 16:1544087. [PMID: 40201569 PMCID: PMC11975668 DOI: 10.3389/fgene.2025.1544087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Background Karyotype and genome size are critical genetic characteristics with significant value for cytogenetics, taxonomy, phylogenetics, evolution, and molecular biology. The Lycosidae family, known for its diverse spiders with varying ecological habits and behavioral traits, has seen limited exploration of its karyotype and genome size. Methods We utilized an improved tissue drop technique to prepare chromosome slides and compare the features of male and female karyotypes for two wolf spiders with different habits of Lycosidae. Furthermore, we predicted their genome sizes using flow cytometry (FCM) and K-mer analysis. Results The karyotypes of female and male Hippasa lycosina were 2n♀ = 26 = 14 m + 12 sm and 2n♂ = 24 = 10 m + 14 sm, respectively, and were composed of metacentric (m) and submetacentric (sm) chromosomes. In contrast, the karyotypes of Lycosa grahami consisted of telocentric (t) and subtelocentric (st) chromosomes (2n♀ = 20 = 20th and 2n♂ = 18 = 12th + 6t, for females and males). The sex chromosomes were both X1X2O. The estimated sizes of the H. lycosina and L. grahami genomes were 1966.54-2099.89 Mb and 3692.81-4012.56 Mb, respectively. Flow cytometry yielded slightly smaller estimates for genome size compared to k-mer analysis. K-mer analysis revealed a genome heterozygosity of 0.42% for H. lycosina and 0.80% for L. grahami, along with duplication ratios of 21.39% and 54.91%, respectively. Conclusion This study describes the first analysis of the genome sizes and karyotypes of two spiders from the Lycosidae that exhibit differential habits and provides essential data for future phylogenetic, cytogenetic, and genomic studies.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Mengying Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
| | - Liang Leng
- School of Pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Ya Wu
- School of Pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Hanting Yang
- School of Pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Liangting Wang
- School of Pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Baimei Liu
- School of Pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Yang
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Zizhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
| | - Shilin Chen
- School of Pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Chi Song
- School of Pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
El-Nagish A, Liedtke S, Breitenbach S, Heitkam T. Preparing high-quality chromosome spreads from Crocus species for karyotyping and FISH. Mol Cytogenet 2025; 18:2. [PMID: 39980057 PMCID: PMC11843997 DOI: 10.1186/s13039-025-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The saffron-producing Crocus sativus (L.) and its wild relative C. cartwrightianus (Herb.) are key species for understanding genetic evolution in this genus. Molecular-cytogenetic methods, especially fluorescent in situ hybridization (FISH), are essential for exploring the genetic relationships in this genus. Yet, preparing high-quality chromosomes for FISH analysis across Crocus species remains difficult. A standardized protocol for achieving clear and well-separated mitotic chromosomes is still lacking. This study aimed to assess the effectiveness of pretreatments with four chromosome synchronization methods for optimal chromosome spread preparation in Crocus. Root tips of different Crocus species were treated with four chromosome preparation methods namely hydroxyurea-colchicine (HC), nitrous oxide (NO), hydroxyquinoline (HQ), and ice water (IW) pretreatments to investigate their effectiveness in producing high-quality mitotic chromosome spreads. Metaphases obtained by the four methods were analyzed to assess their quality and metaphase index. RESULTS Evaluation of 22,507 cells allowed us to confidently recommend a protocol for Crocus chromosome preparation. Among the methods, ice water pretreatment yielded the highest metaphase index (2.05%), more than doubling the results of HC (1.08%), NO (1.15%), and HQ (1.16%). Ice water-treated chromosomes exhibited better chromosome morphology, with relatively proper size, and non-overlapping chromosomes that were optimal for FISH analysis. Ice water pretreatment was also applied to C. cartwrightianus, the diploid progenitor of C. sativus, where it demonstrated similar efficacy. DAPI staining of chromosomes in both species allowed for clear visualization of intercalary and terminal heterochromatin. FISH analysis using 18S-5.8S-25S and 5S rDNA probes confirmed the utility of IW-prepared chromosome spreads for cytogenetic studies. CONCLUSIONS We strongly recommend ice water pretreatment as a suitable and effective method for obtaining many metaphase spreads of high-quality in C. sativus and related species, particularly for applications involving a detailed cytogenetic analysis.
Collapse
Affiliation(s)
- Abdullah El-Nagish
- Department of Biology, Institute of Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sarah Breitenbach
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Tony Heitkam
- Department of Biology, Institute of Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
3
|
Irdianto SA, Dwiranti A, Bowolaksono A. Extrachromosomal circular DNA: a double-edged sword in cancer progression and age-related diseases. Hum Cell 2025; 38:58. [PMID: 39969664 DOI: 10.1007/s13577-025-01178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Extrachromosomal circular DNA (eccDNA) is a fascinating form of genetic material found outside the usual chromosomal DNA in eukaryotic cells, including humans. Since its discovery in the 1960s, eccDNA has been linked to critical roles in cancer progression and age-related diseases. This review thoroughly explores eccDNA, covering its types, how it forms, and its significant impact on diseases, particularly cancer. EccDNA, especially in its extrachromosomal DNA (ecDNA) form, contributes to the genetic diversity of tumour cells, helping them evolve quickly and resist treatments. Beyond cancer, eccDNA is also connected to age-related conditions like Werner syndrome, amyotrophic lateral sclerosis (ALS), and type 2 diabetes mellitus (T2DM), where it may affect genomic stability and disease development. The potential of eccDNA as a biomarker for predicting disease outcomes and as a target for new treatments is also highlighted. This review aims to deepen our understanding of eccDNA and inspire further research into its roles in human health and disease, paving the way for innovative diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Shadira Anindieta Irdianto
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Astari Dwiranti
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
- Institute for Advanced Sustainable Materials Research and Technology (INA-SMART), Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, 16424, Indonesia
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
| |
Collapse
|
4
|
Schmidt N, Sielemann K, Breitenbach S, Fuchs J, Pucker B, Weisshaar B, Holtgräwe D, Heitkam T. Repeat turnover meets stable chromosomes: repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:171-190. [PMID: 38128038 DOI: 10.1111/tpj.16599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Sarah Breitenbach
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Graz, Austria
| |
Collapse
|