1
|
Microbial transformations by sulfur bacteria can recover value from phosphogypsum: A global problem and a possible solution. Biotechnol Adv 2022; 57:107949. [PMID: 35337932 DOI: 10.1016/j.biotechadv.2022.107949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Rising global population and affluence are increasing demands for food production and the phosphorus (P) fertilizers needed to grow that food. Essential are new approaches for managing the growing amount of phosphogypsum (PG) that is a by-product of phosphoric-acid production from phosphate rock. Today, only ~15% of the worldwide production of PG is recycled, mainly for agriculture and road construction. This review addresses microbial valorization of PG through strategies that apply sulfur-transforming bacteria: sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB). The focus is on recovering elemental sulfur (S0), which can be used to make the sulfuric acid needed to produce phosphoric acid from rock phosphate. Our review provides in-depth understanding of the microbiological, chemical, and technological bases for microbial reclamation of S0 from PG. The review presents the principles and practices for sulfate leaching from PG, reduction of sulfate to sulfide by SRB, and oxidation of sulfide to S0 by SOB. The choice of electron donor for SRB, control of oxygen delivery to SOB, and nutrient requirements are emphasized. Although microorganism-based technologies for PG reclamation are far from mature, the efficiency of such SRB- and SOB-based processes has been documented at laboratory and industrial scales. This review should spur biotechnological advances toward recovering value from PG.
Collapse
|
2
|
Wang J, Shaheen SM, Jing M, Anderson CWN, Swertz AC, Wang SL, Feng X, Rinklebe J. Mobilization, Methylation, and Demethylation of Mercury in a Paddy Soil Under Systematic Redox Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10133-10141. [PMID: 34210118 DOI: 10.1021/acs.est.0c07321] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Methylmercury (MeHg) contamination in paddy fields is a significant environmental issue globally since over half of the population of our planet consumes rice. MeHg is a neurotoxin produced by microorganisms in oxygen-limited environments. Microbial effect on MeHg production is a hotspot of research; however, it has been largely ignored how the oxidation-reduction potential (Eh) shapes MeHg formation. Here, we elucidated Hg (de)-methylation in a contaminated soil by increasing Eh stepwise from -300 to +300 mV using a sophisticated biogeochemical microcosm. At the Eh range from -300 to -100 mV, high MeHg concentration and dissolved total Hg (THg) concentration were found due to a high relative abundance of Hg-methylation bacteria (e.g., Desulfitobacterium spp.), acidification, and reductive dissolution of Fe(oxyhydr)oxides. At the Eh range from 0 to +200 mV, the formation of colloids leads to adsorption of Hg and as a result colloidal Hg increased. MeHg reduction with Eh (-300 to +200 mV) increase was mainly attributed to a reduced Hg methylation, as dissolved THg and relative abundance of Desulfitobacterium spp. decreased by 50 and 96%, respectively, at Eh of +200 mV as compared to Eh of -300 mV. Mercury demethylation might be less important since the relative abundance of demethylation bacteria (Clostridium spp.) also decreased over 93% at Eh of +200 mV. These new results are crucial for predicting Hg risks in paddy fields.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
- Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Sabry M Shaheen
- Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, 33516 Kafr El-Sheikh, Egypt
| | - Min Jing
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
| | - Christopher W N Anderson
- Environmental Sciences, School of Agriculture and Environment, Massey University, 4442 Palmerston North, New Zealand
| | - Ann-Christin Swertz
- Department of Safety Technology and Environmental Protection, Faculty of Mechanical Engineering and Safety Engineering, University of Wuppertal, Rainer-Gruenter-Straße, 42119 Wuppertal, Germany
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, University of Sejong, 98 Gunja-Dong, Guangjin-Gu, Seoul 05006, Republic of Korea
| |
Collapse
|