1
|
Quantifying finer-scale behaviours using self-organising maps (SOMs) to link accelerometery signatures with behavioural patterns in free-roaming terrestrial animals. Sci Rep 2021; 11:13566. [PMID: 34193910 PMCID: PMC8245572 DOI: 10.1038/s41598-021-92896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022] Open
Abstract
Collecting quantitative information on animal behaviours is difficult, especially from cryptic species or species that alter natural behaviours under observation. Using harness-mounted tri-axial accelerometers free-roaming domestic cats (Felis Catus) we developed a methodology that can precisely classify finer-scale behaviours. We further tested the effect of a prey-protector device designed to reduce prey capture. We aligned accelerometer traces collected at 50 Hz with video files (60 fps) and labelled 12 individual behaviours, then trained a supervised machine-learning algorithm using Kohonen super self-organising maps (SOM). The SOM was able to predict individual behaviours with a ~ 99.6% overall accuracy, which was slightly better than for random forest estimates using the same dataset (98.9%). There was a significant effect of sample size, with precision and sensitivity decreasing rapidly below 2000 1-s observations. We were also able to detect a behaviour specific reduction in the predictability when cats were fitted with the prey-protector device indicating it altered biomechanical gait. Our results can be applied in movement ecology, zoology and conservation, where habitat specific movement performance between predators or prey may be critical to managing species of conservation significance, or in veterinary and agricultural fields, where early detection of movement pathologies can improve animal welfare.
Collapse
|
2
|
Gleiss AC, Schallert RJ, Dale JJ, Wilson SG, Block BA. Direct measurement of swimming and diving kinematics of giant Atlantic bluefin tuna ( Thunnus thynnus). ROYAL SOCIETY OPEN SCIENCE 2019; 6:190203. [PMID: 31218059 PMCID: PMC6549966 DOI: 10.1098/rsos.190203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 05/24/2023]
Abstract
Tunas possess a range of physiological and mechanical adaptations geared towards high-performance swimming that are of considerable interest to physiologists, ecologists and engineers. Advances in biologging have provided significant improvements in understanding tuna migrations and vertical movement patterns, yet our understanding of the locomotion and swimming mechanics of these fish under natural conditions is limited. We equipped Atlantic bluefin tuna (Thunnus thynnus) with motion-sensitive tags and video cameras to quantify the gaits and kinematics used by wild fish. Our data reveal significant variety in the locomotory kinematics of Atlantic bluefin tuna, ranging from continuous locomotion to two types of intermittent locomotion. The tuna sustained swimming speeds in excess of 1.5 m s-1 (0.6 body lengths s-1), while beating their tail at a frequency of approximately 1 Hz. While diving, some descents were entirely composed of passive glides, with slower descent rates featuring more gliding, while ascents were primarily composed of active swimming. The observed swimming behaviour of Atlantic bluefin tuna is consistent with theoretical models predicting such intermittent locomotion to result in mechanical and physiological advantages. Our results confirm that Atlantic bluefin tuna possess behavioural specializations to increase their locomotory performance, which together with their unique physiology improve their capacity to use pelagic and mesopelagic habitats.
Collapse
Affiliation(s)
- Adrian C. Gleiss
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- College of Science, Health, Engineering and Education, Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Robert J. Schallert
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Jonathan J. Dale
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Steve G. Wilson
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Barbara A. Block
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| |
Collapse
|
3
|
Ahuir-Baraja AE, Padrós F, Palacios-Abella JF, Raga JA, Montero FE. Accacoelium contortum (Trematoda: Accacoeliidae) a trematode living as a monogenean: morphological and pathological implications. Parasit Vectors 2015; 8:540. [PMID: 26471059 PMCID: PMC4608113 DOI: 10.1186/s13071-015-1162-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accacoelium contortum (Rudolphi, 1819) Monticelli, 1893 is a frequent but poorly known trematode found on gills, pharynx and digestive tract of the ocean sunfish Mola mola (L.). Although the morphology of A. contortum agrees with that of a typical endoparasitic trematode, with two relatively small suckers and no large holdfasts, this parasite is normally ectoparasitic. The main objective of this paper is to explore this peculiar host-parasite relationship. METHODS A total of 106 ocean sunfish were examined for the presence of A. contortum. The oropharyngeal chamber (gills and pharynx) and the digestive tract were analysed. As the previous descriptions of this species seem to be based on contracted specimens, for the morphological study the parasites were killed using two methods: with hot 70% ethanol (with relaxed bodies) and with 70% ethanol at room temperature (with contracted bodies). For histological studies, samples from fresh fish with parasitised left gills, pharynx and digestive tract were fixed in buffered 10% formalin. For molecular studies the 18S, 28S and ITS-2 sequences were provided and compared with the available data in GenBank®. RESULTS New information on the morphology of A. contortum and on the parasite-related response and pathological alterations in the host are given. New diagnostic traits for some structures are provided: e.g. tegumental papillae of the forebody with apical digitiform swellings and mouth surrounded by a circum-oral crown of simple papillae. The length of the ventral sucker peduncle and the position of the vitellarium were found to be associated with the contraction degree of the specimen. Immature individuals of this species are described for the first time. An intense proliferative inflammatory response of host gill and pharynx epithelium at the host-parasite interface was detected and parasites became partially covered by overgrowths of host tissues. CONCLUSIONS The induction of prominent histological alterations associated with A. contortum seems to be an adaptation to the external environment, an unusual location for trematodes.
Collapse
Affiliation(s)
- Ana Elena Ahuir-Baraja
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Marine Zoology, Science Park, University of Valencia, Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - Francesc Padrós
- Fish Diseases Diagnostic Service. Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Veterinaria, Universitat Autònoma de Barcelona, 08193, Barcelona, Cerdanyola, Spain.
| | - Jose Francisco Palacios-Abella
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Marine Zoology, Science Park, University of Valencia, Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - Juan Antonio Raga
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Marine Zoology, Science Park, University of Valencia, Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - Francisco Esteban Montero
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Marine Zoology, Science Park, University of Valencia, Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
4
|
Nakamura I, Goto Y, Sato K. Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores. J Anim Ecol 2015; 84:590-603. [PMID: 25643743 DOI: 10.1111/1365-2656.12346] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Abstract
Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was <12 °C. Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment.
Collapse
Affiliation(s)
- Itsumi Nakamura
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Yusuke Goto
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
5
|
Payne NL, Taylor MD, Watanabe YY, Semmens JM. From physiology to physics: are we recognizing the flexibility of biologging tools? J Exp Biol 2014; 217:317-22. [DOI: 10.1242/jeb.093922] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The remote measurement of data from free-ranging animals has been termed ‘biologging’ and in recent years this relatively small set of tools has been instrumental in addressing remarkably diverse questions – from ‘how will tuna respond to climate change?’ to ‘why are whales big?’. While a single biologging dataset can have the potential to test hypotheses spanning physiology, ecology, evolution and theoretical physics, explicit illustrations of this flexibility are scarce and this has arguably hindered the full realization of the power of biologging tools. Here we present a small set of examples from studies that have collected data on two parameters widespread in biologging research (depth and acceleration), but that have interpreted their data in the context of extremely diverse phenomena: from tests of biomechanical and diving-optimality models to identifications of feeding events, Lévy flight foraging strategies and expanding oxygen minimum zones. We use these examples to highlight the remarkable flexibility of biologging tools, and identify several mechanisms that may enhance the scope and dissemination of future biologging research programs.
Collapse
Affiliation(s)
- Nicholas L. Payne
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
| | - Matthew D. Taylor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, NSW 2315, Australia
| | - Yuuki Y. Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
| | - Jayson M. Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|