1
|
Kubanov AA, Chikin VV, Karamova AE, Znamenskaya LF, Artamonova OG, Verbenko DA. Genetic markers for psoriatic arthritis among patients with psoriasis. Part II: HLA genes. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Psoriatic arthritis often leads to the development of severe outcomes ankylosis, deformities of the affected joints with severe impairment of their functions and disability. Early identification of patients with psoriasis with an increased risk of developing psoriatic arthritis for the purpose of its timely diagnosis and early initiation of therapy can prevent the development of severe disease outcomes. It is believed that the genes of the HLA system make the greatest individual genetic contribution to the formation of a predisposition to hereditary diseases with polygenic inheritance. The literature review considers the polymorphisms of the genes of the HLA system, associated with the development of psoriatic arthritis, in patients with psoriasis. The HLA alleles that contribute to the development of psoriatic arthritis and its individual forms have been identified. HLA alleles have been identified, which have a protective effect against the development of psoriatic arthritis.
Collapse
|
2
|
Loll B, Rückert C, Uchanska-Ziegler B, Ziegler A. Conformational Plasticity of HLA-B27 Molecules Correlates Inversely With Efficiency of Negative T Cell Selection. Front Immunol 2020; 11:179. [PMID: 32117305 PMCID: PMC7027375 DOI: 10.3389/fimmu.2020.00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
The development of autoimmune disorders is incompletely understood. Inefficient thymic T cell selection against self-peptides presented by major histocompatibility antigens (HLA in humans) may contribute to the emergence of auto-reactive effector cells, and molecular mimicry between foreign and self-peptides could promote T cell cross-reactivity. A pair of class I subtypes, HLA-B2705 and HLA-B2709, have previously been intensely studied, because they are distinguished from each other only by a single amino acid exchange at the floor of the peptide-binding groove, yet are differentially associated with the autoinflammatory disorder ankylosing spondylitis. Using X-ray crystallography in combination with ensemble refinement, we find that the non-disease-associated subtype HLA-B2709, when presenting the self-peptide pGR (RRRWHRWRL), exhibits elevated conformational dynamics, and the complex can also be recognized by T cells. Both features are not observed in case of the sequence-related self-peptide pVIPR (RRKWRRWHL) in complex with this subtype, and T cell cross-reactivity between pGR, pVIPR, and the viral peptide pLMP2 (RRRWRRLTV) is only rarely observed. The disease-associated subtype HLA-B2705, however, exhibits extensive conformational flexibility in case of the three complexes, all of which are also recognized by frequently occurring cross-reactive T cells. A comparison of the structural and dynamic properties of the six HLA-B27 complexes, together with their individual ability to interact with T cells, permits us to correlate the flexibility of HLA-B27 complexes with effector cell reactivity. The results suggest the existence of an inverse relationship between conformational plasticity of peptide-HLA-B27 complexes and the efficiency of negative selection of self-reactive cells within the thymus.
Collapse
Affiliation(s)
- Bernhard Loll
- Institut für Chemie und Biochemie, Abteilung Strukturbiochemie, Freie Universität Berlin, Berlin, Germany,*Correspondence: Bernhard Loll
| | - Christine Rückert
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany
| | - Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany,Ziegler Biosolutions, Waldshut-Tiengen, Germany
| | - Andreas Ziegler
- Ziegler Biosolutions, Waldshut-Tiengen, Germany,Andreas Ziegler
| |
Collapse
|
3
|
Lim Kam Sian TCC, Indumathy S, Halim H, Greule A, Cryle MJ, Bowness P, Rossjohn J, Gras S, Purcell AW, Schittenhelm RB. Allelic association with ankylosing spondylitis fails to correlate with human leukocyte antigen B27 homodimer formation. J Biol Chem 2019; 294:20185-20195. [PMID: 31740583 DOI: 10.1074/jbc.ra119.010257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Expression of human leukocyte antigen (HLA)-B27 is strongly associated with predisposition toward ankylosing spondylitis (AS) and other spondyloarthropathies. However, the exact involvement of HLA-B27 in disease initiation and progression remains unclear. The homodimer theory, which proposes that HLA-B27 heavy chains aberrantly form homodimers, is a central hypothesis that attempts to explain the role of HLA-B27 in disease pathogenesis. Here, we examined the ability of the eight most prevalent HLA-B27 allotypes (HLA-B*27:02 to HLA-B*27:09) to form homodimers. We observed that HLA-B*27:03, a disease-associated HLA-B27 subtype, showed a significantly reduced ability to form homodimers compared with all other allotypes, including the non-disease-associated/protective allotypes HLA-B*27:06 and HLA-B*27:09. We used X-ray crystallography and site-directed mutagenesis to unravel the molecular and structural mechanisms in HLA-B*27:03 that are responsible for its compromised ability to form homodimers. We show that polymorphism at position 59, which differentiates HLA-B*27:03 from all other allotypes, is responsible for its compromised ability to form homodimers. Indeed, histidine 59 in HLA-B*27:03 leads to a series of local conformational changes that act in concert to reduce the accessibility of the nearby cysteine 67, an essential amino acid residue for the formation of HLA-B27 homodimers. Considered together, the ability of both protective and disease-associated HLA-B27 allotypes to form homodimers and the failure of HLA-B*27:03 to form homodimers challenge the role of HLA-B27 homodimers in AS pathoetiology. Rather, this work implicates other features, such as peptide binding and antigen presentation, as pivotal mechanisms for disease pathogenesis.
Collapse
Affiliation(s)
- Terry C C Lim Kam Sian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Saranjah Indumathy
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hanim Halim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anja Greule
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Max J Cryle
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Paul Bowness
- Botnar Research Centre, Nuffield, Department of Orthopaedics Rheumatology and Musculoskeletal Science, Nuffield Orthopaedic Centre, University of Oxford, Windmill Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia .,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B Schittenhelm
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia .,Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Serçinoğlu O, Özcan G, Kabaş ZK, Ozbek P. A computational docking study on the pH dependence of peptide binding to HLA-B27 sub-types differentially associated with ankylosing spondylitis. J Comput Aided Mol Des 2016; 30:569-81. [PMID: 27506766 DOI: 10.1007/s10822-016-9934-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/04/2016] [Indexed: 01/17/2023]
Abstract
A single amino acid difference (Asp116His), having a key role in a pathogenesis pathway, distinguishes HLA-B*27:05 and HLA-B*27:09 sub-types as associated and non-associated with ankylosing spondylitis, respectively. In this study, molecular docking simulations were carried out with the aim of comprehending the differences in the binding behavior of both alleles at varying pH conditions. A library of modeled peptides was formed upon single point mutations aiming to address the effect of 20 naturally occurring amino acids at the binding core peptide positions. For both alleles, computational docking was applied using Autodock 4.2. Obtained free energies of binding (FEB) were compared within the peptide library and between the alleles at varying pH conditions. The amino acid preferences of each position were studied enlightening the role of each on binding. The preferred amino acids for each position of pVIPR were found to be harmonious with experimental studies. Our results indicate that, as the pH is lowered, the capacity of HLA-B*27:05 to bind peptides in the library is largely lost. Hydrogen bonding analysis suggests that the interaction between the main anchor positions of pVIPR and their respective binding pocket residues are affected from the pH the most, causing an overall shift in the FEB profiles.
Collapse
Affiliation(s)
- Onur Serçinoğlu
- Faculty of Engineering, Department of Bioengineering, Goztepe Campus, MC-373, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - Gülin Özcan
- Faculty of Engineering, Department of Bioengineering, Goztepe Campus, MC-373, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - Zeynep Kutlu Kabaş
- Faculty of Engineering, Department of Bioengineering, Goztepe Campus, MC-373, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - Pemra Ozbek
- Faculty of Engineering, Department of Bioengineering, Goztepe Campus, MC-373, Marmara University, 34722, Goztepe, Istanbul, Turkey.
| |
Collapse
|
5
|
Abualrous ET, Fritzsche S, Hein Z, Al-Balushi MS, Reinink P, Boyle LH, Wellbrock U, Antoniou AN, Springer S. F pocket flexibility influences the tapasin dependence of two differentially disease-associated MHC Class I proteins. Eur J Immunol 2015; 45:1248-57. [PMID: 25615938 DOI: 10.1002/eji.201445307] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/06/2014] [Accepted: 01/19/2015] [Indexed: 01/01/2023]
Abstract
The human MHC class I protein HLA-B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA-B*27:09, which differs in a single amino acid in the F pocket of the peptide-binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins in the cell, we have investigated the conformational stability of both proteins using a combination of in silico and experimental approaches. Here, we show that the binding site of B*27:05 is conformationally disordered in the absence of peptide due to a charge repulsion at the bottom of the F pocket. In agreement with this, B*27:05 requires the chaperone protein tapasin to a greater extent than the conformationally stable B*27:09 in order to remain structured and to bind peptide. Taken together, our data demonstrate a method to predict tapasin dependence and physiological behavior from the sequence and crystal structure of a particular class I allotype. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Esam T Abualrous
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany; Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Beerbaum M, Ballaschk M, Erdmann N, Schnick C, Diehl A, Uchanska-Ziegler B, Ziegler A, Schmieder P. NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. JOURNAL OF BIOMOLECULAR NMR 2013; 57:167-178. [PMID: 24006098 DOI: 10.1007/s10858-013-9777-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
β2-Microglobulin (β2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high evolutionary conservation of structural features of β2m in various MHC molecules as shown by X-ray crystallography, β2m is often considered as a mere scaffolding protein. Using nuclear magnetic resonance (NMR) spectroscopy, we investigate here whether β2m residues at the interface to the HC exhibit changes depending on HC polymorphisms and the peptides bound to the complex in solution. First we show that human β2m can effectively be produced in deuterated form using high-cell-density-fermentation and we employ the NMR resonance assignments obtained for triple-labeled β2m bound to the HLA-B*27:09 HC to examine the β2m-HC interface. We then proceed to compare the resonances of β2m in two minimally distinct subtypes, HLA-B*27:09 and HLA-B*27:05, that are differentially associated with the spondyloarthropathy Ankylosing Spondylitis. Each of these subtypes is complexed with four distinct peptides for which structural information is already available. We find that only the resonances at the β2m-HC interface show a variation of their chemical shifts between the different complexes. This indicates the existence of an unexpected plasticity that enables β2m to accommodate changes that depend on HC polymorphism as well as on the bound peptide through subtle structural variations of the protein-protein interface.
Collapse
Affiliation(s)
- Monika Beerbaum
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Howell WM. HLA and disease: guilt by association. Int J Immunogenet 2013; 41:1-12. [DOI: 10.1111/iji.12088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/10/2013] [Indexed: 02/06/2023]
Affiliation(s)
- W. M. Howell
- Department of Histocompatibility and Immunogenetics; NHS Blood and Transplant; Newcastle upon Tyne UK
| |
Collapse
|
8
|
Ankylosing spondylitis: from cells to genes. Int J Inflam 2013; 2013:501653. [PMID: 23970995 PMCID: PMC3736459 DOI: 10.1155/2013/501653] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease of unknown etiology, though it is considered an autoimmune disease. HLA-B27 is the risk factor most often associated with AS, and although the mechanism of involvement is unclear, the subtypes and other features of the relationship between HLA-B27 and AS have been studied for years. Additionally, the key role of IL-17 and Th17 cells in autoimmunity and inflammation suggests that the latter and the cytokines involved in their generation could play a role in the pathogenesis of this disease. Recent studies have described the sources of IL-17 and IL-23, as well as the characterization of Th17 cells in autoimmune diseases. Other cells, such as NK and regulatory T cells, have been implicated in autoimmunity and have been evaluated to ascertain their possible role in AS. Moreover, several polymorphisms, mutations and deletions in the regulatory proteins, protein-coding regions, and promoter regions of different genes involved in immune responses have been discovered and evaluated for possible genetic linkages to AS. In this review, we analyze the features of HLA-B27 and the suggested mechanisms of its involvement in AS while also focusing on the characterization of the immune response and the identification of genes associated with AS.
Collapse
|
9
|
|
10
|
Hee CS, Fabian H, Uchanska-Ziegler B, Ziegler A, Loll B. Comparative biophysical characterization of chicken β2-microglobulin. Biophys Chem 2012; 167:26-35. [PMID: 22695053 DOI: 10.1016/j.bpc.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/24/2023]
Abstract
β(2)-microglobulin (β(2)m) is the smallest building block of molecules belonging to the immunoglobulin superfamily. By comparing thermodynamic and structural characteristics of chicken β(2)m with those of other species, we seek to elucidate whether it is possible to pinpoint features that set the avian protein apart from other β(2)m. The thermodynamic assays revealed that chicken β(2)m exhibits a lower melting temperature than human β(2)m, and the H/D exchange behavior observed by infrared spectroscopy indicates a more flexible structure of the former protein. To understand these differences at a molecular level, we determined the structure of free chicken β(2)m by X-ray crystallography to a resolution of 2.0 Å. Our comparisons indicate that certain biophysical characteristics of the chicken protein, particularly its conformational flexibility, diverge considerably from those of the other β(2)m analyzed, although basic structural features have been retained through evolution.
Collapse
Affiliation(s)
- Chee-Seng Hee
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
11
|
Haroon N, Tsui FW, Uchanska-Ziegler B, Ziegler A, Inman RD. Endoplasmic reticulum aminopeptidase 1 (ERAP1) exhibits functionally significant interaction with HLA-B27 and relates to subtype specificity in ankylosing spondylitis. Ann Rheum Dis 2012; 71:589-95. [PMID: 22355039 DOI: 10.1136/annrheumdis-2011-200347] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The functional interaction of endoplasmic reticulum aminopeptidase 1 (ERAP1) with human leucocyte antigen (HLA)-B*27 could be important in the pathogenesis of ankylosing spondylitis (AS). AS is associated with B*27:04 and B*27:05, but not with B*27:06 and B*27:09. The authors studied the surface expression of peptide-HLA(pHLA)-B27 complexes and HLA class-I free heavy chains (FHCs) on peripheral blood mononuclear cells of patients with AS with different ERAP1 single nucleotide polymorphisms. The effects of ERAP1 suppression on HLA-B*27 subtypes were tested. METHODS Peripheral blood mononuclear cells were collected from Caucasian patients with AS for flow cytometry and were stained for pHLA and FHCs. Genotyping was performed for two ERAP1 single nucleotide polymorphisms (rs27044(C/G) and rs30187(C/T)). C1R cells transfected with different HLA-B27 subtypes (B*27:04, B*27:05, B*27:06 and B*27:09) were subjected to ERAP1 suppression by small interfering RNA and stained using the monoclonal antibody (mAb) MARB4 as well as antibodies for pHLA, FHC, intracellular FHC (IC-FHC). MARB4 has been reported to bind to HLA-B27 with extended peptides. RESULTS The authors found variations in FHC expression on the monocytes of patients with AS, depending on different ERAP1 variants. Subsequently, using Hmy2.C1R cells in vitro, the authors show that ERAP1 suppression leads to increased IC-FHC and surface pHLA that react with the monoclonal antibody MARB4. The functional interaction between ERAP1 and HLA-B27 molecules appears to be subtype-specific, since ERAP1 suppression leads to changes only in cells expressing B*27:04 or B*27:05, but not B*27:06 or B*27:09. CONCLUSIONS Direct or indirect alterations in the ERAP1-HLA-B27 interaction could be crucial by causing changes in peptide presentation or FHC formation by HLA-B27 molecules, as well as by contributing to differential subtype association in spondyloarthropathies.
Collapse
Affiliation(s)
- Nigil Haroon
- Division of Rheumatology, Toronto Western Hospital, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
12
|
Interaction pattern of Arg 62 in the A-pocket of differentially disease-associated HLA-B27 subtypes suggests distinct TCR binding modes. PLoS One 2012; 7:e32865. [PMID: 22403718 PMCID: PMC3293911 DOI: 10.1371/journal.pone.0032865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/01/2012] [Indexed: 12/30/2022] Open
Abstract
The single amino acid replacement Asp116His distinguishes the two subtypes HLA-B*2705 and HLA-B*2709 which are, respectively, associated and non-associated with Ankylosing Spondylitis, an autoimmune chronic inflammatory disease. The reason for this differential association is so far poorly understood and might be related to subtype-specific HLA:peptide conformations as well as to subtype/peptide-dependent dynamical properties on the nanoscale. Here, we combine functional experiments with extensive molecular dynamics simulations to investigate the molecular dynamics and function of the conserved Arg62 of the α1-helix for both B27 subtypes in complex with the self-peptides pVIPR (RRKWRRWHL) and TIS (RRLPIFSRL), and the viral peptides pLMP2 (RRRWRRLTV) and NPflu (SRYWAIRTR). Simulations of HLA:peptide systems suggest that peptide-stabilizing interactions of the Arg62 residue observed in crystal structures are metastable for both B27 subtypes under physiological conditions, rendering this arginine solvent-exposed and, probably, a key residue for TCR interaction more than peptide-binding. This view is supported by functional experiments with conservative (R62K) and non-conservative (R62A) B*2705 and B*2709 mutants that showed an overall reduction in their capability to present peptides to CD8+ T cells. Moreover, major subtype-dependent differences in the peptide recognition suggest distinct TCR binding modes for the B*2705 versus the B*2709 subtype.
Collapse
|
13
|
Narzi D, Becker CM, Fiorillo MT, Uchanska-Ziegler B, Ziegler A, Böckmann RA. Dynamical Characterization of Two Differentially Disease Associated MHC Class I Proteins in Complex with Viral and Self-Peptides. J Mol Biol 2012; 415:429-42. [DOI: 10.1016/j.jmb.2011.11.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/01/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
|
14
|
Uchanska-Ziegler B, Loll B, Fabian H, Hee CS, Saenger W, Ziegler A. HLA class I-associated diseases with a suspected autoimmune etiology: HLA-B27 subtypes as a model system. Eur J Cell Biol 2011; 91:274-86. [PMID: 21665321 DOI: 10.1016/j.ejcb.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/05/2023] Open
Abstract
Although most autoimmune diseases are connected to major histocompatibility complex (MHC) class II alleles, a small number of these disorders exhibit a variable degree of association with selected MHC class I genes, like certain human HLA-A and HLA-B alleles. The basis for these associations, however, has so far remained elusive. An understanding might be obtained by comparing functional, biochemical, and biophysical properties of alleles that are minimally distinct from each other, but are nevertheless differentially associated to a given disease, like the HLA-B*27:05 and HLA-B*27:09 antigens, which differ only by a single amino acid residue (Asp116His) that is deeply buried within the binding groove. We have employed a number of approaches, including X-ray crystallography and isotope-edited infrared spectroscopy, to investigate biophysical characteristics of the two HLA-B27 subtypes complexed with up to ten different peptides. Our findings demonstrate that the binding of these peptides as well as the conformational flexibility of the subtypes is greatly influenced by interactions of the C-terminal peptide residue. In particular, a basic C-terminal peptide residue is favoured by the disease-associated subtype HLA-B*27:05, but not by HLA-B*27:09. This property appears also as the only common denominator of distinct HLA class I alleles, among them HLA-B*27:05, HLA-A*03:01 or HLA-A*11:01, that are associated with diseases suspected to have an autoimmune etiology. We postulate here that the products of these alleles, due to their unusual ability to bind with high affinity to a particular peptide set during positive T cell selection in the thymus, are involved in shaping an abnormal T cell repertoire which predisposes to the acquisition of autoimmune diseases.
Collapse
Affiliation(s)
- Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité - Universitätmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Carter JD, Inman RD. Chlamydia-induced reactive arthritis: Hidden in plain sight? Best Pract Res Clin Rheumatol 2011; 25:359-74. [DOI: 10.1016/j.berh.2011.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/10/2011] [Indexed: 01/06/2023]
|
16
|
Pathogenicity of Misfolded and Dimeric HLA-B27 Molecules. Int J Rheumatol 2011; 2011:486856. [PMID: 21547037 PMCID: PMC3087312 DOI: 10.1155/2011/486856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/28/2011] [Indexed: 01/04/2023] Open
Abstract
The association between HLA-B27 and the group of autoimmune inflammatory arthritic diseases, the spondyloarthropathies (SpAs) which include ankylosing spondylitis (AS) and Reactive Arthritis (ReA), has been well established and remains the strongest association between any HLA molecule and autoimmune disease. The mechanism behind this striking association remains elusive; however animal model and biochemical data suggest that HLA-B27 misfolding may be key to understanding its association with the SpAs. Recent investigations have focused on the unusual biochemical structures of HLA-B27 and their potential role in SpA pathogenesis. Here we discuss how these unusual biochemical structures may participate in cellular events leading to chronic inflammation and thus disease progression.
Collapse
|
17
|
Loll B, Rückert C, Hee CS, Saenger W, Uchanska-Ziegler B, Ziegler A. Loss of recognition by cross-reactive T cells and its relation to a C-terminus-induced conformational reorientation of an HLA-B*2705-bound peptide. Protein Sci 2011; 20:278-90. [PMID: 21280120 PMCID: PMC3048413 DOI: 10.1002/pro.559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 01/07/2023]
Abstract
The human major histocompatibility complex class I antigen HLA-B*2705 binds several sequence-related peptides (pVIPR, RRKWRRWHL; pLPM2, RRRWRRLTV; pGR, RRRWHRWRL). Cross-reactivity of cytotoxic T cells (CTL) against these HLA-B*2705:peptide complexes seemed to depend on a particular peptide conformation that is facilitated by the engagement of a crucial residue within the binding groove (Asp116), associated with a noncanonical bulging-in of the middle portion of the bound peptide. We were interested whether a conformational reorientation of the ligand might contribute to the lack of cross-reactivity of these CTL with a peptide derived from voltage-dependent calcium channel α1 subunit (pCAC, SRRWRRWNR), in which the C-terminal peptide residue pArg9 could engage Asp116. Analyses of the HLA-B*2705:pCAC complex by X-ray crystallography at 1.94 Å resolution demonstrated that the peptide had indeed undergone a drastic reorientation, leading it to adopt a canonical binding mode accompanied by the loss of molecular mimicry between pCAC and sequence-related peptides such as pVIPR, pLMP2, and pGR. This was clearly a consequence of interactions of pArg9 with Asp116 and other F-pocket residues. Furthermore, we observed an unprecedented reorientation of several additional residues of the HLA-B*2705 heavy chain near the N-terminal region of the peptide, including also the presence of double conformations of two glutamate residues, Glu63 and Glu163, on opposing sides of the peptide binding groove. Together with the Arg-Ser exchange at peptide position 1, there are thus multiple structural reasons that may explain the observed failure of pVIPR-directed, HLA-B*2705-restricted CTL to cross-react with HLA-B*2705:pCAC complexes.
Collapse
Affiliation(s)
- Bernhard Loll
- Institut für Chemie und Biochemie, Abteilung Strukturbiochemie, Freie Universität BerlinTakustrasse 6, Berlin 14195, Germany,*Correspondence to: Bernhard Loll, Institut für Chemie und Biochemie, Abteilung Strukturbiochemie, Freie Universität Berlin, Takustrasse 6, Berlin 14195, Germany. E-mail:
| | - Christine Rückert
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität BerlinThielallee 73, Berlin 14195, Germany
| | - Chee Seng Hee
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität BerlinThielallee 73, Berlin 14195, Germany
| | - Wolfram Saenger
- Institut für Chemie und Biochemie, Abteilung Kristallographie, Freie Universität BerlinTakustrasse 6, Berlin 14195, Germany
| | - Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität BerlinThielallee 73, Berlin 14195, Germany
| | - Andreas Ziegler
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität BerlinThielallee 73, Berlin 14195, Germany
| |
Collapse
|
18
|
Abstract
Histocompatibility antigen HLA-B27 is a normal gene that is distributed worldwide with variable prevalence and shows a remarkable association with ankylosing spondylitis and related spondyloarthropathies. The precise biological explanation for this remarkable association remains elusive. HLA-B27 represents a family of closely related proteins encoded by an ever-increasing number of alleles; there are 75 alleles of HLA-B27 known thus far, based on nucleotide sequence differences, but at the translated protein level, there are 62 known subtypes of HLA-B27. Not all subtypes are disease associated. Moreover, existence of a possible hierarchical ranking among some of the subtypes for their disease association has been observed.
Collapse
Affiliation(s)
- Muhammad Asim Khan
- Division of Rheumatology, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|
19
|
Structure of a classical MHC class I molecule that binds "non-classical" ligands. PLoS Biol 2010; 8:e1000557. [PMID: 21151886 PMCID: PMC2998441 DOI: 10.1371/journal.pbio.1000557] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
The chicken MHC YF1*7.1 X-ray structures reveal that this protein binds lipids and thus represents a "hybrid" class I complex with features of classical as well as non-classical MHC molecules. Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules. Proteins encoded by the major histocompatibility complex (MHC) play crucial roles in vertebrate immune systems, presenting pathogen-derived protein fragments to receptors on effector cells. In contrast, some non-classical MHC class I proteins such as CD1 molecules possess a hydrophobic groove that allows them to display lipids. Chicken MHC-Y is a genetic region outside the core MHC that harbors several immune-related genes, among them YF1*7.1, which encodes a protein whose structure we solved in this study. YF1*7.1 is an MHC class I molecule that exhibits the architecture typical of classical MHC class I antigens but possesses a hydrophobic binding groove that binds non-peptidic ligands. By using lipid-binding assays, we show that this molecule can indeed bind lipids. Therefore, YF1*7.1 bridges, at least in structural terms, the traditional gap between classical and non-classical MHC class I molecules. Lipid-binding YF1 proteins might serve the chicken to enlarge its otherwise very small repertoire of antigen-presenting MHC class I molecules. Furthermore, comparative analyses of the two protein subunits of classical MHC molecules revealed a structural feature in chickens that appears to be shared by non-mammalian but not by mammalian vertebrates. This unique feature is indicative of a structure-dependent co-evolution of two genetically unlinked genes in non-mammalian species.
Collapse
|
20
|
Haliloglu T, Gul A, Erman B. Predicting important residues and interaction pathways in proteins using Gaussian Network Model: binding and stability of HLA proteins. PLoS Comput Biol 2010; 6:e1000845. [PMID: 20628622 PMCID: PMC2900293 DOI: 10.1371/journal.pcbi.1000845] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/02/2010] [Indexed: 01/07/2023] Open
Abstract
A statistical thermodynamics approach is proposed to determine structurally and functionally important residues in native proteins that are involved in energy exchange with a ligand and other residues along an interaction pathway. The structure-function relationships, ligand binding and allosteric activities of ten structures of HLA Class I proteins of the immune system are studied by the Gaussian Network Model. Five of these models are associated with inflammatory rheumatic disease and the remaining five are properly functioning. In the Gaussian Network Model, the protein structures are modeled as an elastic network where the inter-residue interactions are harmonic. Important residues and the interaction pathways in the proteins are identified by focusing on the largest eigenvalue of the residue interaction matrix. Predicted important residues match those known from previous experimental and clinical work. Graph perturbation is used to determine the response of the important residues along the interaction pathway. Differences in response patterns of the two sets of proteins are identified and their relations to disease are discussed. We propose a statistical thermodynamics model for determining structurally and functionally important residues in ligand-protein interactions. Our method identifies the path that the protein uses in transferring information from one point to the other. We show that a few energetically active residues are most efficient in energy exchange with the surroundings acting as ‘energy gates’. The remaining important residues that we identify are situated along the interaction path. These are the hub residues. Strong correlations exist between energy gates and hub residues along the interaction path, thus relating to allostery and cooperative binding. We studied the structure-function, ligand binding and allosteric activities of ten models of HLA Class I proteins of the immune system. Five of these models belong to the HLA-B*2705 allele and are strongly associated with a chronic inflammatory rheumatic disease. The remaining five from the HLA-B*2709 allele of the same protein are the corresponding properly functioning ones. We show that differences in the contact maps of the two types lead to significant and consistent changes in the fluctuation profile, making the HLA-B*2705 alleles respond too strongly to perturbation.
Collapse
Affiliation(s)
- Turkan Haliloglu
- Polymer Research Center, Bogazici University, Bebek, Istanbul, Turkey
- * E-mail: (TH); (BE)
| | - Ahmet Gul
- Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Burak Erman
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
- * E-mail: (TH); (BE)
| |
Collapse
|
21
|
Ziegler A, Santos PSC, Kellermann T, Uchanska-Ziegler B. Self/nonself perception, reproduction and the extended MHC. SELF NONSELF 2010; 1:176-191. [PMID: 21487476 DOI: 10.4161/self.1.3.12736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023]
Abstract
Self/nonself perception governs mate selection in most eukaryotic species. It relies on a number of natural barriers that act before, during and after copulation. These hurdles prevent a costly investment into an embryo with potentially suboptimal genetic and immunological properties and aim at discouraging fertilization when male and female gametes exhibit extensive sharing of alleles. Due to the fact that several genes belonging to the extended major histocompatibility complex (xMHC) carry out crucial immune functions and are the most polymorphic within vertebrate genomes, it is likely that securing heterozygosity and the selection of rare alleles within this gene complex contributes to endowing the offspring with an advantage in fighting infections. Apart from MHC class I and II antigens, the products of several other genes within the xMHC are candidates for participating in mate choice, especially since the respective loci are subject to long-range linkage disequilibrium which may aid to preserve functionally connected alleles within a given haplotype. Among these loci are polymorphic odorant receptor genes that are expressed not only in the olfactory epithelium, but also within male reproductive tissues. They may thus not only be of importance in olfaction-influenced mate choice, by recognizing MHC-dependent individual-specific olfactory signals, but could also guide spermatozoa along chemical gradients to their target, the oocyte. By focusing on the human HLA complex and genes within its vicinity, we show here that the products of several xMHC-specified molecules might be involved in self/nonself perception during reproduction. Although the molecular details are often unknown, the existence of highly diverse, yet intertwined pre- and post-copulatory barriers suggests that xMHC-encoded proteins may be important for various stages of mate choice, germ cell development, as well as embryonic and foetal life in mammals and other vertebrates. Many of these genes should thus be regarded as crucial not only within the immune system, but also in reproduction.
Collapse
Affiliation(s)
- Andreas Ziegler
- Institut für Immungenetik; Charité-Universitätsmedizin Berlin; Campus Benjamin Franklin; Freie Universität Berlin; Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Fabian H, Huser H, Loll B, Ziegler A, Naumann D, Uchanska-Ziegler B. HLA-B27 heavy chains distinguished by a micropolymorphism exhibit differential flexibility. ACTA ACUST UNITED AC 2010; 62:978-87. [DOI: 10.1002/art.27316] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Nurzia E, Panimolle F, Cauli A, Mathieu A, Magnacca A, Paladini F, Sorrentino R, Fiorillo MT. CD8+ T-cell mediated self-reactivity in HLA-B27 context as a consequence of dual peptide conformation. Clin Immunol 2010; 135:476-82. [PMID: 20167541 DOI: 10.1016/j.clim.2010.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 12/11/2022]
Abstract
HLA-B2709 does not predispose for Ankylosing Spondylitis although it differs from B2705, the most common and AS-associated subtype in different ethnic groups, only for the substitution His116Asp. Therefore, a productive approach to elucidate the molecular mechanisms of the disease could be the comparison of these alleles. B2705 has been shown to display certain self-peptides enriched in basic residues i.e., pVIPR and pGR, in a dual conformation and this is accompanied by the presence of specific cytotoxic T cells in patients with AS. In this study, we convalidate our previous observation that B2709 healthy subjects do not possess primary reactivity towards pVIPR while showing a prompt CD8+ T cell response driven by pGR. Notably, in the B2709 context of presentation, pVIPR assumes only a single conformation in contrast with pGR which is dimorphic. These results suggest a possible general connection between the occurrence of double peptide conformation and the property of inducing specific autoimmune responses.
Collapse
Affiliation(s)
- Elisa Nurzia
- Department of Cell Biology and Development, Sapienza University of Rome, 00185 Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|