1
|
Mora CC, Rojas Contreras JA, Rosales Villarreal MC, Urban Martínez JL, Delgado E, Medrano Roldan H, Hernández Rodarte FS, Reyes Jáquez D. Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form. Heliyon 2025; 11:e41878. [PMID: 39872451 PMCID: PMC11770503 DOI: 10.1016/j.heliyon.2025.e41878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
In this study, gold and silver were recovered through a bioleaching process conducted at room temperature over 11 days. Native bacteria and varying ratios of mineral pulp to culture medium (20/80, 37.5/62.5, and 50/50 %) from a mining operation in Zacatecas, Mexico, were evaluated. The mineral was crushed to a particle size of 0.125 inches or smaller, containing gold and silver concentrations of 0.609 g/ton and 138.89 g/ton, respectively. Four native microorganisms were identified using molecular biology techniques and a 16S rRNA gene fragment: Acidovorax citrulli, Brevundimonas albigilva, Sphingomonas korenensis, and Methylobacterium organophilum. The bioleaching system achieved metal extractions of 84.12 % and 63.93 % for gold and silver, respectively. Different microorganisms were identified at various processing times: Sphingomonas korenensis (days 1, 2, 5, 8, and 11), Methylobacterium organophilum (days 1 and 2), Paenibacillus dongdonensis (days 1 and 2), Brevundimonas albigilva (day 5), Ureibacillus manganicus (day 5), Peribacillus simplex (day 8), Niallia circulans (day 8), Massilia atriviolacea (day 11), and Bacillus licheniformis (day 11). The dominant bacterium throughout the process was Sphingomonas korenensis, which appeared at all stages of the experiment.
Collapse
Affiliation(s)
- Cuauhtémoc Contreras Mora
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Juan Antonio Rojas Contreras
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Mayra Cristina Rosales Villarreal
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - José Luis Urban Martínez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Efren Delgado
- Food Science and Technology, Department of Family and Consumer Sciences, New Mexico State University, P.O. Box 30001, Las Cruces, NM, 88003-8001, USA
| | - Hiram Medrano Roldan
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Felipe Samuel Hernández Rodarte
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Damián Reyes Jáquez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| |
Collapse
|
2
|
Cheng JE, Su P, Zhang ZH, Zheng LM, Wang ZY, Hamid MR, Dai JP, Du XH, Chen LJ, Zhai ZY, Kong XT, Liu Y, Zhang DY. Metagenomic analysis of the dynamical conversion of photosynthetic bacterial communities in different crop fields over different growth periods. PLoS One 2022; 17:e0262517. [PMID: 35834536 PMCID: PMC9282544 DOI: 10.1371/journal.pone.0262517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic bacteria are beneficial to plants, but knowledge of photosynthetic bacterial community dynamics in field crops during different growth stages is scarce. The factors controlling the changes in the photosynthetic bacterial community during plant growth require further investigation. In this study, 35 microbial community samples were collected from the seedling, flowering, and mature stages of tomato, cucumber, and soybean plants. 35 microbial community samples were assessed using Illumina sequencing of the photosynthetic reaction center subunit M (pufM) gene. The results revealed significant alpha diversity and community structure differences among the three crops at the different growth stages. Proteobacteria was the dominant bacterial phylum, and Methylobacterium, Roseateles, and Thiorhodococcus were the dominant genera at all growth stages. PCoA revealed clear differences in the structure of the microbial populations isolated from leaf samples collected from different crops at different growth stages. In addition, a dissimilarity test revealed significant differences in the photosynthetic bacterial community among crops and growth stages (P<0.05). The photosynthetic bacterial communities changed during crop growth. OTUs assigned to Methylobacterium were present in varying abundances among different sample types, which we speculated was related to the function of different Methylobacterium species in promoting plant growth development and enhancing plant photosynthetic efficiency. In conclusion, the dynamics observed in this study provide new research ideas for the detailed assessments of the relationship between photosynthetic bacteria and different growth stages of plants.
Collapse
Affiliation(s)
- Ju-E Cheng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Pin Su
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhan-Hong Zhang
- Hunan Vegetable Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Li-Min Zheng
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhong-Yong Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Muhammad Rizwan Hamid
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Jian-Ping Dai
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao-Hua Du
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Li-Jie Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhong-Ying Zhai
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao-Ting Kong
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - De-Yong Zhang
- Hunan Hybrid Rice Research Center, Changsha, China
- * E-mail:
| |
Collapse
|
3
|
Lehours AC, Jeune AHL, Aguer JP, Céréghino R, Corbara B, Kéraval B, Leroy C, Perrière F, Jeanthon C, Carrias JF. Unexpectedly high bacteriochlorophyll a concentrations in neotropical tank bromeliads. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:689-698. [PMID: 27264016 DOI: 10.1111/1758-2229.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The contribution of bacteriochlorophyll a (BChl a) to photosynthetically driven electron transport is generally low in aquatic and terrestrial systems. Here, we provide evidence that anoxygenic bacterial phototrophy is widespread and substantial in water retained by tank bromeliads of a primary rainforest in French Guiana. An analysis of the water extracted from 104 randomly selected tank bromeliads using infrared fluorimetry suggested the overall presence of abundant anoxygenic phototrophic bacterial populations. We found that purple bacteria dominated these populations responsible for unusually high BChl a/chlorophyll a ratios (>50%). Our data suggest that BChl a-based phototrophy in tank bromeliads can have significant effects on the ecology of tank-bromeliad ecosystems and on the carbon and energy fluxes in Neotropical forests.
Collapse
Affiliation(s)
- Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Anne-Hélène Le Jeune
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Jean-Pierre Aguer
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Régis Céréghino
- Toulouse Université, INP, Université Paul Sabatier, EcoLab, Toulouse, F31062, France
- UMR CNRS 5245, EcoLab, Toulouse, 31062, France
| | - Bruno Corbara
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Benoit Kéraval
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Céline Leroy
- IRD, UMR AMAP (botAnique et Modélisation de l'Architecture des Plantes et des végétations), Boulevard de la Lironde, TA A-51/PS2, Montpellier, 34398, France
- EcofoG (Ecologie des Forêts de Guyane, UMR 8172), Campus Agronomique, 97379 Kourou, France
| | - Fanny Perrière
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Christian Jeanthon
- Marine Phototrophic Prokaryotes Team 29680 Roscoff, CNRS, Station Biologique de Roscoff, France
- Oceanic Plankton Group, Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Jean-François Carrias
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| |
Collapse
|
4
|
Bibiloni-Isaksson J, Seymour JR, Ingleton T, van de Kamp J, Bodrossy L, Brown MV. Spatial and temporal variability of aerobic anoxygenic photoheterotrophic bacteria along the east coast of Australia. Environ Microbiol 2016; 18:4485-4500. [PMID: 27376620 DOI: 10.1111/1462-2920.13436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/28/2016] [Indexed: 11/29/2022]
Abstract
Aerobic Anoxygenic Phototrophic Bacteria (AAnPB) are ecologically important microorganisms, widespread in oceanic photic zones. However, the key environmental drivers underpinning AAnPB abundance and diversity are still largely undefined. The temporal patterns in AAnPB dynamics at three oceanographic reference stations spanning at approximately 15° latitude along the Australian east coast were examined. AAnPB abundance was highly variable, with pufM gene copies ranging from 1.1 × 102 to 1.4 × 105 ml-1 and positively correlated with day length and solar radiation. pufM gene Miseq sequencing revealed that the majority of sequences were closely related to those obtained previously, suggesting that key AAnPB groups are widely distributed across similar environments globally. Temperature was a major structuring factor for AAnPB assemblages across large spatial scales, correlating positively with richness and Gammaproteobacteria (phylogroup K) abundance but negatively with Roseobacter-clade (phylogroup E) abundance, with temperatures between 16°C and 18°C identified as a potential transition zone between these groups. Network analysis revealed that discrete AAnPB populations exploit specific niches defined by varying temperature, light and nutrient conditions in the Tasman Sea system, with evidence for both niche sharing and partitioning amongst closely related operational taxonomic units.
Collapse
Affiliation(s)
- Jaime Bibiloni-Isaksson
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Justin R Seymour
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Tim Ingleton
- Department of Environment, Climate Change and Water, Waters and Coastal Science Section, Sydney South, NSW, 1232, Australia
| | - Jodie van de Kamp
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS, 7000, Australia
| | - Levente Bodrossy
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS, 7000, Australia
| | - Mark V Brown
- School of Biotechnology and Biomolecular Science, UNSW Australia, Sydney, 2052, Australia
| |
Collapse
|
5
|
Cuadrat RRC, Ferrera I, Grossart HP, Dávila AMR. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo--Brazil). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:76-87. [PMID: 26871866 PMCID: PMC4770915 DOI: 10.1089/omi.2015.0142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean.
Collapse
Affiliation(s)
- Rafael R C Cuadrat
- 1 Computational and Systems Biology Laboratory, Oswaldo Cruz Institute , Fiocruz, Brazil .,2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Berlin, Germany .,5 Berlin Center for Genomics in Biodiversity Research , Berlin, Germany
| | - Isabel Ferrera
- 2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Berlin, Germany .,4 Institut de Ciències del Mar , CSIC, Barcelona, Spain
| | - Hans-Peter Grossart
- 2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Berlin, Germany .,3 Potsdam University, Institute for Biochemistry and Biology , Potsdam, Germany
| | - Alberto M R Dávila
- 1 Computational and Systems Biology Laboratory, Oswaldo Cruz Institute , Fiocruz, Brazil
| |
Collapse
|
6
|
Maltman C, Piercey-Normore MD, Yurkov V. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings. Extremophiles 2015; 19:1013-9. [PMID: 26254805 DOI: 10.1007/s00792-015-0776-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans.
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | |
Collapse
|
7
|
Kwak MJ, Jeong H, Madhaiyan M, Lee Y, Sa TM, Oh TK, Kim JF. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS One 2014; 9:e106704. [PMID: 25211235 PMCID: PMC4161386 DOI: 10.1371/journal.pone.0106704] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.
Collapse
Affiliation(s)
- Min-Jung Kwak
- Department of Systems Biology, and Division of Life Sciences, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Haeyoung Jeong
- Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Munusamy Madhaiyan
- Department of Agricultural Chemistry, Chungbuk National University, Heungdeok-gu, Cheongju, Republic of Korea
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Heungdeok-gu, Cheongju, Republic of Korea
| | - Tong-Min Sa
- Department of Agricultural Chemistry, Chungbuk National University, Heungdeok-gu, Cheongju, Republic of Korea
| | - Tae Kwang Oh
- Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- 21C Frontier Microbial Genomics and Applications Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, and Division of Life Sciences, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Raven JA, Edwards D. Photosynthesis in Early Land Plants: Adapting to the Terrestrial Environment. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Rohwerder T, Müller RH, Weichler MT, Schuster J, Hübschmann T, Müller S, Harms H. Cultivation of Aquincola tertiaricarbonis L108 on the fuel oxygenate intermediate tert-butyl alcohol induces aerobic anoxygenic photosynthesis at extremely low feeding rates. Microbiology (Reading) 2013; 159:2180-2190. [DOI: 10.1099/mic.0.068957-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thore Rohwerder
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Roland H. Müller
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - M. Teresa Weichler
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Judith Schuster
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Thomas Hübschmann
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| |
Collapse
|
10
|
Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Appl Environ Microbiol 2013; 79:4895-905. [PMID: 23770907 DOI: 10.1128/aem.01087-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources.
Collapse
|
11
|
Steven B, Gallegos-Graves LV, Belnap J, Kuske CR. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 2013; 86:101-13. [DOI: 10.1111/1574-6941.12143] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Blaire Steven
- Bioscience Division; Los Alamos National Laboratory; Los Alamos; NM; USA
| | | | - Jayne Belnap
- U.S. Geological Survey; Southwest Biological Science Center; Moab; UT; USA
| | - Cheryl R. Kuske
- Bioscience Division; Los Alamos National Laboratory; Los Alamos; NM; USA
| |
Collapse
|
12
|
Atamna-Ismaeel N, Finkel O, Glaser F, von Mering C, Vorholt JA, Koblížek M, Belkin S, Béjà O. Bacterial anoxygenic photosynthesis on plant leaf surfaces. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:209-16. [PMID: 23757275 DOI: 10.1111/j.1758-2229.2011.00323.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aerial surface of plants, the phyllosphere, is colonized by numerous bacteria displaying diverse metabolic properties that enable their survival in this specific habitat. Recently, we reported on the presence of microbial rhodopsin harbouring bacteria on the top of leaf surfaces. Here, we report on the presence of additional bacterial populations capable of harvesting light as a means of supplementing their metabolic requirements. An analysis of six phyllosphere metagenomes revealed the presence of a diverse community of anoxygenic phototrophic bacteria, including the previously reported methylobacteria, as well as other known and unknown phototrophs. The presence of anoxygenic phototrophic bacteria was also confirmed in situ by infrared epifluorescence microscopy. The microscopic enumeration correlated with estimates based on metagenomic analyses, confirming both the presence and high abundance of these microorganisms in the phyllosphere. Our data suggest that the phyllosphere contains a phylogenetically diverse assemblage of phototrophic species, including some yet undescribed bacterial clades that appear to be phyllosphere-unique.
Collapse
Affiliation(s)
- Nof Atamna-Ismaeel
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland Institute of Microbiology, Department of Phototrophic Microorganisms - ALGATECH, 379 81 Třeboň, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the pacific ocean. Appl Environ Microbiol 2012; 78:2858-66. [PMID: 22307290 DOI: 10.1128/aem.06268-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities.
Collapse
|