1
|
Körner D, Schäfer NM, Lagares Jr. A, Birmes L, Oehlmann NN, Addison H, Pöhl S, Thanbichler M, Rebelein JG, Petersen J, Becker A. Modular Low-Copy-Number Plasmid Vectors for Rhodobacterales with Extended Host Range in Alphaproteobacteria. ACS Synth Biol 2024; 13:1537-1548. [PMID: 38718218 PMCID: PMC11107812 DOI: 10.1021/acssynbio.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Members of the alphaproteobacterial order Rhodobacterales are metabolically diverse and highly abundant in the ocean. They are becoming increasingly interesting for marine biotechnology, due to their ecological adaptability, wealth of versatile low-copy-number plasmids, and their ability to produce secondary metabolites. However, molecular tools for engineering strains of this bacterial lineage are limited. Here, we expand the genetic toolbox by establishing standardized, modular repABC-based plasmid vectors of four well-characterized compatibility groups from the Roseobacter group applicable in the Rhodobacterales, and likely in further alphaproteobacterial orders (Hyphomicrobiales, Rhodospirillales, Caulobacterales). We confirmed replication of these newly constructed pABC vectors in two members of Rhodobacterales, namely, Dinoroseobacter shibae DFL 12 and Rhodobacter capsulatus B10S, as well as in two members of the alphaproteobacterial order Hyphomicrobiales (synonym: Rhizobiales; Ensifer meliloti 2011 and "Agrobacterium fabrum" C58). Maintenance of the pABC vectors in the biotechnologically valuable orders Rhodobacterales and Hyphomicrobiales facilitates the shuttling of genetic constructs between alphaproteobacterial genera and orders. Additionally, plasmid replication was verified in one member of Rhodospirillales (Rhodospirillum rubrum S1) as well as in one member of Caulobacterales (Caulobacter vibrioides CB15N). The modular construction of pABC vectors and the usage of four compatible replication systems, which allows their coexistence in a host cell, are advantageous features for future implementations of newly designed synthetic pathways. The vector applicability was demonstrated by functional complementation of a nitrogenase mutant phenotype by two complementary pABC-based plasmids in R. capsulatus.
Collapse
Affiliation(s)
- Désirée Körner
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Niklas M. Schäfer
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Antonio Lagares Jr.
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Lukas Birmes
- Leibniz-Institut
DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig 38124, Germany
| | - Niels N. Oehlmann
- Max
Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Holly Addison
- Max
Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Sebastian Pöhl
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Martin Thanbichler
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
- Max
Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Johannes G. Rebelein
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
- Max
Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Jörn Petersen
- Leibniz-Institut
DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig 38124, Germany
| | - Anke Becker
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
2
|
Hyde JR, Armond T, Herring JA, Hope S, Grose JH, Breakwell DP, Pickett BE. Diversity and conservation of the genome architecture of phages infecting the Alphaproteobacteria. Microbiol Spectr 2024; 12:e0282723. [PMID: 37991376 PMCID: PMC10783043 DOI: 10.1128/spectrum.02827-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE This study reports the results of the largest analysis of genome sequences from phages that infect the Alphaproteobacteria class of bacterial hosts. We analyzed over 100 whole genome sequences of phages to construct dotplots, categorize them into genetically distinct clusters, generate a bootstrapped phylogenetic tree, compute protein orthologs, and predict packaging strategies. We determined that the phage sequences primarily cluster by the bacterial host family, phage morphotype, and genome size. We expect that the findings reported in this seminal study will facilitate future analyses that will improve our knowledge of the phages that infect these hosts.
Collapse
Affiliation(s)
- Jonathan R. Hyde
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Thomas Armond
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Jacob A. Herring
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Donald P. Breakwell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
3
|
Metagenomic analysis of microbial community structure and function in a improved biofilter with odorous gases. Sci Rep 2022; 12:1731. [PMID: 35110663 PMCID: PMC8810771 DOI: 10.1038/s41598-022-05858-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
Biofilters have been broadly applied to degrade the odorous gases from industrial emissions. A industrial scale biofilter was set up to treat the odorous gases. To explore biofilter potentials, the microbial community structure and function must be well defined. Using of improved biofilter, the differences in microbial community structures and functions in biofilters before and after treatment were investigated by metagenomic analysis. Odorous gases have the potential to alter the microbial community structure in the sludge of biofilter. A total of 90,016 genes assigned into various functional metabolic pathways were identified. In the improved biofilter, the dominant phyla were Proteobacteria, Planctomycetes, and Chloroflexi, and the dominant genera were Thioalkalivibrio, Thauera, and Pseudomonas. Several xenobiotic biodegradation-related pathways showed significant changes during the treatment process. Compared with the original biofilter, Thermotogae and Crenarchaeota phyla were significantly enriched in the improved biofilter, suggesting their important role in nitrogen-fixing. Furthermore, several nitrogen metabolic pathway-related genes, such as nirA and nifA, and sulfur metabolic pathway-related genes, such as fccB and phsA, were considered to be efficient genes that were involved in removing odorous gases. Our findings can be used for improving the efficiency of biofilter and helping the industrial enterprises to reduce the emission of waste gases.
Collapse
|
4
|
Maeda I. Potential of Phototrophic Purple Nonsulfur Bacteria to Fix Nitrogen in Rice Fields. Microorganisms 2021; 10:microorganisms10010028. [PMID: 35056477 PMCID: PMC8777916 DOI: 10.3390/microorganisms10010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Biological nitrogen fixation catalyzed by Mo-nitrogenase of symbiotic diazotrophs has attracted interest because its potential to supply plant-available nitrogen offers an alternative way of using chemical fertilizers for sustainable agriculture. Phototrophic purple nonsulfur bacteria (PNSB) diazotrophically grow under light anaerobic conditions and can be isolated from photic and microaerobic zones of rice fields. Therefore, PNSB as asymbiotic diazotrophs contribute to nitrogen fixation in rice fields. An attempt to measure nitrogen in the oxidized surface layer of paddy soil estimates that approximately 6–8 kg N/ha/year might be accumulated by phototrophic microorganisms. Species of PNSB possess one of or both alternative nitrogenases, V-nitrogenase and Fe-nitrogenase, which are found in asymbiotic diazotrophs, in addition to Mo-nitrogenase. The regulatory networks control nitrogenase activity in response to ammonium, molecular oxygen, and light irradiation. Laboratory and field studies have revealed effectiveness of PNSB inoculation to rice cultures on increases of nitrogen gain, plant growth, and/or grain yield. In this review, properties of the nitrogenase isozymes and regulation of nitrogenase activities in PNSB are described, and research challenges and potential of PNSB inoculation to rice cultures are discussed from a viewpoint of their applications as nitrogen biofertilizer.
Collapse
Affiliation(s)
- Isamu Maeda
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan
| |
Collapse
|
5
|
Nisar A, Gongye X, Huang Y, Khan S, Chen M, Wu B, He M. Genome-Wide Analyses of Proteome and Acetylome in Zymomonas mobilis Under N 2-Fixing Condition. Front Microbiol 2021; 12:740555. [PMID: 34803957 PMCID: PMC8600466 DOI: 10.3389/fmicb.2021.740555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Zymomonas mobilis, a promising candidate for industrial biofuel production, is capable of nitrogen fixation naturally without hindering ethanol production. However, little is known about the regulation of nitrogen fixation in Z. mobilis. We herein conducted a high throughput analysis of proteome and protein acetylation in Z. mobilis under N2-fixing conditions and established its first acetylome. The upregulated proteins mainly belong to processes of nitrogen fixation, motility, chemotaxis, flagellar assembly, energy production, transportation, and oxidation–reduction. Whereas, downregulated proteins are mainly related to energy-consuming and biosynthetic processes. Our acetylome analyses revealed 197 uniquely acetylated proteins, belonging to major pathways such as nitrogen fixation, central carbon metabolism, ammonia assimilation pathway, protein biosynthesis, and amino acid metabolism. Further, we observed acetylation in glycolytic enzymes of central carbon metabolism, the nitrogenase complex, the master regulator NifA, and the enzyme in GS/GOGAT cycle. These findings suggest that protein acetylation may play an important role in regulating various aspects of N2-metabolism in Z. mobilis. This study provides new knowledge of specific proteins and their associated cellular processes and pathways that may be regulated by protein acetylation in Z. mobilis.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Xiangxu Gongye
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yuhuan Huang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Sawar Khan
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mao Chen
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
6
|
Nolorbe-Payahua CD, de Freitas AS, Roesch LFW, Zanette J. Environmental contamination alters the intestinal microbial community of the livebearer killifish Phalloceros caudimaculatus. Heliyon 2020; 6:e04190. [PMID: 32613104 PMCID: PMC7322053 DOI: 10.1016/j.heliyon.2020.e04190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 10/26/2022] Open
Abstract
Intestinal microbiota perform important functions for the health of fishes. Knowing the microbial composition and evaluating the possible effects caused by anthropogenic pollution in the intestinal microbiota of fish populations might represent an important step in defining microbial biomarkers for water pollution. This study evaluated the impact of environmental contamination on the gut microbiota of the livebearer killifish Phalloceros caudimaculatus. The 16S survey using the V4 region of the 16S rRNA gene was used to characterize and compare the microbiota of two P. caudimaculatus populations from streams with different levels of environmental contamination in Rio Grande, RS, Brazil. Twelve bacterial operational taxonomic units (OTUs) (around one-third of the total) were shared between both fish populations. They represent the core microbiota of the gut in this species. The dominant phyla were Protebacteria and Firmicutes, with more than 80% of relative abundance. The dominant genus was Burkholderia with more than 35% of the relative abundance irrespective of the environmental condition. We detected a lower microbial diversity (Shannon index and observed OTUs) in fish from the polluted stream compared to the reference stream. The PERMANOVA analysis showed that the intestinal microbial communities from fish living in the polluted stream were distinct from those found in the reference stream (p < 0.05). Finally, we identified Luteolibacter, Methylocaldum and Rhodobacter genera, which correlated strongly with the polluted stream. These taxa might represent potential microbial biomarkers of exposure to environmental contaminants in the guts of fish. Confirmation of these findings in other polluted environments might allow the development of a microbiota-based screening approach for environmental evaluation in ecotoxicological studies in aquatic ecosystems.
Collapse
Affiliation(s)
- Christian Deyvis Nolorbe-Payahua
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - ICB, Campus Carreiros, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil
| | - Anderson Santos de Freitas
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIP-Biotec, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, RS, 97300-162, Brazil
| | - Luiz Fernando Wurdig Roesch
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIP-Biotec, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, RS, 97300-162, Brazil
| | - Juliano Zanette
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - ICB, Campus Carreiros, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
7
|
Hu L, Yang Y, Yan X, Zhang T, Xiang J, Gao Z, Chen Y, Yang S, Fei Q. Molecular Mechanism Associated With the Impact of Methane/Oxygen Gas Supply Ratios on Cell Growth of Methylomicrobium buryatense 5GB1 Through RNA-Seq. Front Bioeng Biotechnol 2020; 8:263. [PMID: 32318556 PMCID: PMC7154130 DOI: 10.3389/fbioe.2020.00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
The methane (CH4)/oxygen (O2) gas supply ratios significantly affect the cell growth and metabolic pathways of aerobic obligate methanotrophs. However, few studies have explored the CH4/O2 ratios of the inlet gas, especially for the CH4 concentrations within the explosion range (5∼15% of CH4 in air). This study thoroughly investigated the molecular mechanisms associated with the impact of different CH4/O2 ratios on cell growth of a model type I methanotroph Methylomicrobium buryatense 5GB1 cultured at five different CH4/O2 supply molar ratios from 0.28 to 5.24, corresponding to CH4 content in gas mixture from 5% to 50%, using RNA-Seq transcriptomics approach. In the batch cultivation, the highest growth rate of 0.287 h-1 was achieved when the CH4/O2 supply molar ratio was 0.93 (15% CH4 in air), and it is crucial to keep the availability of carbon and oxygen levels balanced for optimal growth. At this ratio, genes related to methane metabolism, phosphate uptake system, and nitrogen fixation were significantly upregulated. The results indicated that the optimal CH4/O2 ratio prompted cell growth by increasing genes involved in metabolic pathways of carbon, nitrogen and phosphate utilization in M. buryatense 5GB1. Our findings provided an effective gas supply strategy for methanotrophs, which could enhance the production of key intermediates and enzymes to improve the performance of bioconversion processes using CH4 as the only carbon and energy source. This research also helps identify genes associated with the optimal CH4/O2 ratio for balancing energy metabolism and carbon flux, which could be candidate targets for future metabolic engineering practice.
Collapse
Affiliation(s)
- Lizhen Hu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tianqing Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jing Xiang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zixi Gao
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
- *Correspondence: Shihui Yang,
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi’an Jiaotong University, Xi’an, China
- Qiang Fei,
| |
Collapse
|
8
|
Inaba N, Trainer VL, Nagai S, Kojima S, Sakami T, Takagi S, Imai I. Dynamics of seagrass bed microbial communities in artificial Chattonella blooms: A laboratory microcosm study. HARMFUL ALGAE 2019; 84:139-150. [PMID: 31128798 DOI: 10.1016/j.hal.2018.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The influence of algicidal and growth-inhibiting bacteria in a seagrass (Zostera marina) bed, and their capability of controlling blooms of the fish-killing raphidophyte flagellate, Chattonella antiqua, were examined in laboratory microcosm experiments. Bacterial communities in seawater collected from the seagrass bed and Z. marina biofilm suppressed artificial Chattonella blooms in the presence of their natural competitors and predators. Phylogenetic analysis suggest that considerable numbers of bacteria that suppress Chattonella, including algicidal or growth-inhibiting bacteria isolated from seagrass biofilm and seawater from the seagrass bed, are members of Proteobacteria that can decompose lignocellulosic compounds. A direct comparison of partial 16S rRNA gene sequences (500 bp) revealed that the growth-limiting bacterium (strain ZM101) isolated from Z. marina biofilm belonged to the genus Phaeobacter (Alphaproteobacteria) showed 100% similarity with strains of growth-limiting bacteria isolated from seawater of both the seagrass bed and nearshore region, suggesting that the origin of these growth-limiting bacteria are the seagrass biofilm or seawater surrounding the seagrass bed. This study demonstrates that Chattonella growth-limiting bacteria living on seagrass biofilm and in the adjacent seawater can suppress Chattonella blooms, suggesting the possibility of Chattonella bloom prevention through restoration, protection, or introduction of seagrass in coastal areas.
Collapse
Affiliation(s)
- Nobuharu Inaba
- Civil Engineering Research Institute for Cold Region, Public Works Research Institute, Hiragishi 1-3-1-34, Toyohira-ku, Sapporo, Hokkaido, 062-8602, Japan.
| | - Vera L Trainer
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA, 98112, United States
| | - Satoshi Nagai
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Senri Kojima
- Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hokkaido, Hakodate, 041-8611, Japan
| | - Tomoko Sakami
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama-ura, Minami-ise, Mie 516-0193, Japan
| | - Shuzo Takagi
- Research Institute for Fisheries Science, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Kashino 6641-6, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Ichiro Imai
- Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hokkaido, Hakodate, 041-8611, Japan
| |
Collapse
|
9
|
Erkal NA, Eser MG, Özgür E, Gündüz U, Eroglu I, Yücel M. Transcriptome analysis of Rhodobacter capsulatus grown on different nitrogen sources. Arch Microbiol 2019; 201:661-671. [PMID: 30796473 DOI: 10.1007/s00203-019-01635-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023]
Abstract
This study investigated the effect of different nitrogen sources, namely, ammonium chloride and glutamate, on photoheterotrophic metabolism of Rhodobacter capsulatus grown on acetate as the carbon source. Genes that were significantly differentially expressed according to Affymetrix microarray data were categorized into Clusters of Orthologous Groups functional categories and those in acetate assimilation, hydrogen production, and photosynthetic electron transport pathways were analyzed in detail. Genes related to hydrogen production metabolism were significantly downregulated in cultures grown on ammonium chloride when compared to those grown on glutamate. In contrast, photosynthetic electron transport and acetate assimilation pathway genes were upregulated. In detail, aceA encoding isocitrate lyase, a unique enzyme of the glyoxylate cycle and ccrA encoding the rate limiting crotonyl-CoA carboxylase/reductase enzyme of ethylmalonyl-coA pathway were significantly upregulated. Our findings indicate for the first time that R. capsulatus can operate both glyoxylate and ethylmalonyl-coA cycles for acetate assimilation.
Collapse
Affiliation(s)
- Nilüfer Afsar Erkal
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
- Mikro Biyositemler Inc, 06530, Ankara, Turkey
| | | | - Ebru Özgür
- Mikro Biyositemler Inc, 06530, Ankara, Turkey
- Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Ufuk Gündüz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Inci Eroglu
- Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Meral Yücel
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
10
|
Zhu B, Zhang X, Zhao C, Chen S, Yang S. Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits. Sci Rep 2018; 8:17803. [PMID: 30546119 PMCID: PMC6292899 DOI: 10.1038/s41598-018-36160-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022] Open
Abstract
Mangrove ecosystems are characteristic of the high salinity, limited nutrients and S-richness. Marichromatium gracile YL28 (YL28) isolated from mangrove tolerates the high concentrations of nitrite and sulfur compounds and efficiently eliminates them. However, the molecular mechanisms of nitrite and sulfur compounds utilization and the habitat adaptation remain unclear in YL28. We sequenced YL28 genome and further performed the comparative genome analysis in 36 purple bacteria including purple sulfur bacteria (PSB) and purple non-sulfur bacteria (PNSB). YL28 has 6 nitrogen cycle pathways (up to 40 genes), and possibly removes nitrite by denitrification, complete assimilation nitrate reduction and fermentative nitrate reduction (DNRA). Comparative genome analysis showed that more nitrogen utilization genes were detected in PNSB than those in PSB. The partial denitrification pathway and complete assimilation nitrate reduction were reported in PSB and DNRA was reported in purple bacteria for the first time. The three sulfur metabolism genes such as oxidation of sulfide, reversed dissimilatory sulfite reduction and sox system allowed to eliminate toxic sulfur compounds in the mangrove ecosystem. Several unique stress response genes facilitate to the tolerance of the high salinity environment. The CRISPR systems and the transposon components in genomic islands (GIs) likely contribute to the genome plasticity in purple bacteria.
Collapse
Affiliation(s)
- Bitong Zhu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Xiaobo Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Chungui Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48863, USA.
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
11
|
Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air. J Biosci Bioeng 2018; 127:589-593. [PMID: 30392964 DOI: 10.1016/j.jbiosc.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/29/2018] [Accepted: 10/11/2018] [Indexed: 01/11/2023]
Abstract
Nitrogen fixation in purple non-sulfur bacteria (PNSB) does not take place even in N-free medium when they are cultured under aerobic conditions. It is assumed that PNSB might possess inadequate capability to protect their cellular components from exposure to air (20.95 vol.% oxygen). In this study, therefore, Bacillus subtilis was inoculated together with a purple non-sulfur bacterium Rhodopseudomonas palustris in N-free medium in order to examine whether nitrogen fixation in Rps. palustris takes place when the co-culture is exposed to 20.95 vol.% oxygen. Rps. palustris grew and formed biofilm only when it was inoculated together with B. subtilis. When the biofilm formed in the co-culture was inoculated in N-free medium, diazotrophic growth was observed in the sequential subcultures. Expression of nifH gene, derepression of nitrogenase activity, an increase of total nitrogen, and a decrease of C/N in the co-culture of Rps. palustris and B. subtilis demonstrated the occurrence of nitrogen fixation under aerobic conditions. The diazotrophic growth was suppressed at a lower medium-to-air ratio in a sealed culture vessel, and growth of B. subtilis preceded growth of Rps. palustris in the co-culture. These results suggest that growth of B. subtilis, which is usually accompanied with oxygen consumption, might cause a decrease of dissolve oxygen concentration in medium and contribute to the occurrence of nitrogenase activity in Rps. palustris.
Collapse
|
12
|
Prasse D, Schmitz RA. Small RNAs Involved in Regulation of Nitrogen Metabolism. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0018-2018. [PMID: 30027888 PMCID: PMC11633612 DOI: 10.1128/microbiolspec.rwr-0018-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Global (metabolic) regulatory networks allow microorganisms to survive periods of nitrogen starvation or general nutrient stress. Uptake and utilization of various nitrogen sources are thus commonly tightly regulated in Prokarya (Bacteria and Archaea) in response to available nitrogen sources. Those well-studied regulations occur mainly at the transcriptional and posttranslational level. Surprisingly, and in contrast to their involvement in most other stress responses, small RNAs (sRNAs) involved in the response to environmental nitrogen fluctuations are only rarely reported. In addition to sRNAs indirectly affecting nitrogen metabolism, only recently it was demonstrated that three sRNAs were directly involved in regulation of nitrogen metabolism in response to changes in available nitrogen sources. All three trans-acting sRNAs are under direct transcriptional control of global nitrogen regulators and affect expression of components of nitrogen metabolism (glutamine synthetase, nitrogenase, and PII-like proteins) by either masking the ribosome binding site and thus inhibiting translation initiation or stabilizing the respective target mRNAs. Most likely, there are many more sRNAs and other types of noncoding RNAs, e.g., riboswitches, involved in the regulation of nitrogen metabolism in Prokarya that remain to be uncovered. The present review summarizes the current knowledge on sRNAs involved in nitrogen metabolism and their biological functions and targets.
Collapse
Affiliation(s)
- Daniela Prasse
- Christian-Albrechts-University Kiel, Institute of General Microbiology, D-24118 Kiel, Germany
| | - Ruth A Schmitz
- Christian-Albrechts-University Kiel, Institute of General Microbiology, D-24118 Kiel, Germany
| |
Collapse
|
13
|
A pathway for biological methane production using bacterial iron-only nitrogenase. Nat Microbiol 2018; 3:281-286. [DOI: 10.1038/s41564-017-0091-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022]
|
14
|
Ryzhkova EP. Alternative enzymes as a special strategy for the adaptation of procaryotic organisms (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Prasse D, Förstner KU, Jäger D, Backofen R, Schmitz RA. sRNA 154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Gö1. RNA Biol 2017; 14:1544-1558. [PMID: 28296572 DOI: 10.1080/15476286.2017.1306170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Trans-encoded sRNA154 is exclusively expressed under nitrogen (N)-deficiency in Methanosarcina mazei strain Gö1. The sRNA154 deletion strain showed a significant decrease in growth under N-limitation, pointing toward a regulatory role of sRNA154 in N-metabolism. Aiming to elucidate its regulatory function we characterized sRNA154 by means of biochemical and genetic approaches. 24 homologs of sRNA154 were identified in recently reported draft genomes of Methanosarcina strains, demonstrating high conservation in sequence and predicted secondary structure with two highly conserved single stranded loops. Transcriptome studies of sRNA154 deletion mutants by an RNA-seq approach uncovered nifH- and nrpA-mRNA, encoding the α-subunit of nitrogenase and the transcriptional activator of the nitrogen fixation (nif)-operon, as potential targets besides other components of the N-metabolism. Furthermore, results obtained from stability, complementation and western blot analysis, as well as in silico target predictions combined with electrophoretic mobility shift-assays, argue for a stabilizing effect of sRNA154 on the polycistronic nif-mRNA and nrpA-mRNA by binding with both loops. Further identified N-related targets were studied, which demonstrates that translation initiation of glnA2-mRNA, encoding glutamine synthetase2, appears to be affected by sRNA154 masking the ribosome binding site, whereas glnA1-mRNA appears to be stabilized by sRNA154. Overall, we propose that sRNA154 has a crucial regulatory role in N-metabolism in M. mazei by stabilizing the polycistronic mRNA encoding nitrogenase and glnA1-mRNA, as well as allowing a feed forward regulation of nif-gene expression by stabilizing nrpA-mRNA. Consequently, sRNA154 represents the first archaeal sRNA, for which a positive posttranscriptional regulation is demonstrated as well as inhibition of translation initiation.
Collapse
Affiliation(s)
- Daniela Prasse
- a Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel , Am Botanischen Garten 1-9, Kiel , Germany
| | - Konrad U Förstner
- b Zentrum für Infektionsforschung , Universität Würzburg , Josef Schneider-Str. 2/ Bau D15, Würzburg
| | - Dominik Jäger
- a Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel , Am Botanischen Garten 1-9, Kiel , Germany
| | - Rolf Backofen
- c Institut für Informatik, Albert-Ludwigs-Universität zu Freiburg , Georges-Koehler-Allee, Freiburg , Germany
| | - Ruth A Schmitz
- a Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel , Am Botanischen Garten 1-9, Kiel , Germany
| |
Collapse
|
16
|
Katzke N, Knapp A, Loeschcke A, Drepper T, Jaeger KE. Novel Tools for the Functional Expression of Metagenomic DNA. Methods Mol Biol 2017; 1539:159-196. [PMID: 27900689 DOI: 10.1007/978-1-4939-6691-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Functional expression of genes from metagenomic libraries is limited by various factors including inefficient transcription and/or translation of target genes as well as improper folding and assembly of the corresponding proteins caused by the lack of appropriate chaperones and cofactors. It is now well accepted that the use of different expression hosts of distinct phylogeny and physiology can dramatically increase the rate of success. In the following chapter, we therefore describe tools and protocols allowing for the comparative heterologous expression of genes in five bacterial expression hosts, namely Escherichia coli, Pseudomonas putida, Bacillus subtilis, Burkholderia glumae, and Rhodobacter capsulatus. Different broad-host-range shuttle vectors are described that allow activity-based screening of metagenomic DNA in these bacteria. Furthermore, we describe the newly developed transfer-and-expression system TREX which comprises genetic elements essential to allow for expression of large clusters of functionally coupled genes in different microbial species.
Collapse
Affiliation(s)
- Nadine Katzke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany.
| |
Collapse
|
17
|
Hydrogen overproducing nitrogenases obtained by random mutagenesis and high-throughput screening. Sci Rep 2016; 6:38291. [PMID: 27910898 PMCID: PMC5133592 DOI: 10.1038/srep38291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023] Open
Abstract
When produced biologically, especially by photosynthetic organisms, hydrogen gas (H2) is arguably the cleanest fuel available. An important limitation to the discovery or synthesis of better H2-producing enzymes is the absence of methods for the high-throughput screening of H2 production in biological systems. Here, we re-engineered the natural H2 sensing system of Rhodobacter capsulatus to direct the emission of LacZ-dependent fluorescence in response to nitrogenase-produced H2. A lacZ gene was placed under the control of the hupA H2-inducible promoter in a strain lacking the uptake hydrogenase and the nifH nitrogenase gene. This system was then used in combination with fluorescence-activated cell sorting flow cytometry to screen large libraries of nitrogenase Fe protein variants generated by random mutagenesis. Exact correlation between fluorescence emission and H2 production levels was found for all automatically selected strains. One of the selected H2-overproducing Fe protein variants lacked 40% of the wild-type amino acid sequence, a surprising finding for a protein that is highly conserved in nature. We propose that this method has great potential to improve microbial H2 production by allowing powerful approaches such as the directed evolution of nitrogenases and hydrogenases.
Collapse
|
18
|
Leyn SA, Suvorova IA, Kazakov AE, Ravcheev DA, Stepanova VV, Novichkov PS, Rodionov DA. Comparative genomics and evolution of transcriptional regulons in Proteobacteria. Microb Genom 2016; 2:e000061. [PMID: 28348857 PMCID: PMC5343134 DOI: 10.1099/mgen.0.000061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022] Open
Abstract
Comparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10 600 TF binding sites and identified more than 15 600 target genes for 1896 TFs constituting the studied orthologous groups of regulators. These include a set of orthologues for 21 metabolism-associated TFs from Escherichia coli and/or Shewanella that are conserved in five or more taxonomic groups and several additional TFs that represent non-orthologous substitutions of the metabolic regulators in some lineages of Proteobacteria. By comparing gene contents of the reconstructed regulons, we identified the core, taxonomy-specific and genome-specific TF regulon members and classified them by their metabolic functions. Detailed analysis of ArgR, TyrR, TrpR, HutC, HypR and other amino-acid-specific regulons demonstrated remarkable differences in regulatory strategies used by various lineages of Proteobacteria. The obtained genomic collection of in silico reconstructed TF regulons contains a large number of new regulatory interactions that await future experimental validation. The collection provides a framework for future evolutionary studies of transcriptional regulatory networks in Bacteria. It can be also used for functional annotation of putative metabolic transporters and enzymes that are abundant in the reconstructed regulons.
Collapse
Affiliation(s)
- Semen A Leyn
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inna A Suvorova
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alexey E Kazakov
- 2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Vita V Stepanova
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry A Rodionov
- 4Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Proteome Profiling of the Rhodobacter capsulatus Molybdenum Response Reveals a Role of IscN in Nitrogen Fixation by Fe-Nitrogenase. J Bacteriol 2015; 198:633-43. [PMID: 26644433 DOI: 10.1128/jb.00750-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Rhodobacter capsulatus is capable of synthesizing two nitrogenases, a molybdenum-dependent nitrogenase and an alternative Mo-free iron-only nitrogenase, enabling this diazotroph to grow with molecular dinitrogen (N2) as the sole nitrogen source. Here, the Mo responses of the wild type and of a mutant lacking ModABC, the high-affinity molybdate transporter, were examined by proteome profiling, Western analysis, epitope tagging, and lacZ reporter fusions. Many Mo-controlled proteins identified in this study have documented or presumed roles in nitrogen fixation, demonstrating the relevance of Mo control in this highly ATP-demanding process. The levels of Mo-nitrogenase, NifHDK, and the Mo storage protein, Mop, increased with increasing Mo concentrations. In contrast, Fe-nitrogenase, AnfHDGK, and ModABC, the Mo transporter, were expressed only under Mo-limiting conditions. IscN was identified as a novel Mo-repressed protein. Mo control of Mop, AnfHDGK, and ModABC corresponded to transcriptional regulation of their genes by the Mo-responsive regulators MopA and MopB. Mo control of NifHDK and IscN appeared to be more complex, involving different posttranscriptional mechanisms. In line with the simultaneous control of IscN and Fe-nitrogenase by Mo, IscN was found to be important for Fe-nitrogenase-dependent diazotrophic growth. The possible role of IscN as an A-type carrier providing Fe-nitrogenase with Fe-S clusters is discussed. IMPORTANCE Biological nitrogen fixation is a central process in the global nitrogen cycle by which the abundant but chemically inert dinitrogen (N2) is reduced to ammonia (NH3), a bioavailable form of nitrogen. Nitrogen reduction is catalyzed by nitrogenases found in diazotrophic bacteria and archaea but not in eukaryotes. All diazotrophs synthesize molybdenum-dependent nitrogenases. In addition, some diazotrophs, including Rhodobacter capsulatus, possess catalytically less efficient alternative Mo-free nitrogenases, whose expression is repressed by Mo. Despite the importance of Mo in biological nitrogen fixation, this is the first study analyzing the proteome-wide Mo response in a diazotroph. IscN was recognized as a novel member of the molybdoproteome in R. capsulatus. It was dispensable for Mo-nitrogenase activity but supported diazotrophic growth under Mo-limiting conditions.
Collapse
|
20
|
Imam S, Fitzgerald CM, Cook EM, Donohue TJ, Noguera DR. Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2015; 123:167-182. [PMID: 25428581 DOI: 10.1007/s11120-014-0061-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Obtaining a better understanding of the physiology and bioenergetics of photosynthetic microbes is an important step toward optimizing these systems for light energy capture or production of valuable commodities. In this work, we analyzed the effect of light intensity on bioproduction, biomass formation, and maintenance energy during photoheterotrophic growth of Rhodobacter sphaeroides. Using data obtained from steady-state bioreactors operated at varying dilution rates and light intensities, we found that irradiance had a significant impact on biomass yield and composition, with significant changes in photopigment, phospholipid, and biopolymer storage contents. We also observed a linear relationship between incident light intensity and H2 production rate between 3 and 10 W m(-2), with saturation observed at 100 W m(-2). The light conversion efficiency to H2 was also higher at lower light intensities. Photosynthetic maintenance energy requirements were also significantly affected by light intensity, with links to differences in biomass composition and the need to maintain redox homeostasis. Inclusion of the measured condition-dependent biomass and maintenance energy parameters and the measured photon uptake rate into a genome-scale metabolic model for R. sphaeroides (iRsp1140) significantly improved its predictive performance. We discuss how our analyses provide new insights into the light-dependent changes in bioenergetic requirements and physiology during photosynthetic growth of R. sphaeroides and potentially other photosynthetic organisms.
Collapse
Affiliation(s)
- Saheed Imam
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
21
|
Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, Beatty JT, Lang AS. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics 2014; 15:730. [PMID: 25164283 PMCID: PMC4158056 DOI: 10.1186/1471-2164-15-730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-730) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St, John's, NL A1B 3X5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T, Classen T, Pietruszka J, Ehrenreich A, Streit WR, Jaeger KE. Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 2014; 98:8099-109. [PMID: 25091044 DOI: 10.1007/s00253-014-5961-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022]
Abstract
Microorganisms are ubiquitous on earth, often forming complex microbial communities in numerous different habitats. Most of these organisms cannot be readily cultivated in the laboratory using standard media and growth conditions. However, it is possible to gain access to the vast genetic, enzymatic, and metabolic diversity present in these microbial communities using cultivation-independent approaches such as sequence- or function-based metagenomics. Function-based analysis is dependent on heterologous expression of metagenomic libraries in a genetically amenable cloning and expression host. To date, Escherichia coli is used in most cases; however, this has the drawback that many genes from heterologous genomes and complex metagenomes are expressed in E. coli either at very low levels or not at all. This review emphasizes the importance of establishing alternative microbial expression systems consisting of different genera and species as well as customized strains and vectors optimized for heterologous expression of membrane proteins, multigene clusters encoding protein complexes or entire metabolic pathways. The use of alternative host-vector systems will complement current metagenomic screening efforts and expand the yield of novel biocatalysts, metabolic pathways, and useful metabolites to be identified from environmental samples.
Collapse
Affiliation(s)
- Wolfgang Liebl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Str. 4, 85654, Freising, Germany,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Photobiological hydrogen production: Bioenergetics and challenges for its practical application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Nakano T, Matsushima-Hibiya Y, Yamamoto M, Takahashi-Nakaguchi A, Fukuda H, Ono M, Takamura-Enya T, Kinashi H, Totsuka Y. ADP-ribosylation of guanosine by SCO5461 protein secreted from Streptomyces coelicolor. Toxicon 2012; 63:55-63. [PMID: 23212047 DOI: 10.1016/j.toxicon.2012.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/15/2012] [Accepted: 11/22/2012] [Indexed: 01/16/2023]
Abstract
The Streptomyces coelicolor A3(2) genome encodes a possible secretion protein, SCO5461, that shares a 30% homology with the activity domains of two toxic ADP-ribosyltransferases, pierisins and mosquitocidal toxin. We found ADP-ribosylating activity for the SCO5461 protein product through its co-incubation with guanosine and NAD(+), which resulted in the formation of N(2)-(ADP-ribos-1-yl)-guanosine ((ar2)Guo), with a K(m) value of 110 μM. SCO5461 was further found to ADP-ribosylate deoxyguanosine, GMP, dGMP, GTP, dGTP, and cyclic GMP with k(cat) values of 150-370 s(-1). Oligo(dG), oligo(G), and yeast tRNA were also ADP-ribosylated by this protein, although with much lower k(cat) values of 0.2 s(-1) or less. SCO5461 showed maximum ADP-ribosylation activity towards guanosine at 30 °C, and maintained 20% of these maximum activity levels even at 0 °C. This is the first report of the ADP-ribosylation of guanosine and guanine mononucleotides among the family members of various ADP-ribosylating enzymes. We additionally observed secretion of the putative gene product, SCO5461, in liquid cultures of S. coelicolor. We thus designated the SCO5461 protein product as S. coelicolor ADP-ribosylating protein, ScARP. Our current results could offer new insights into not only the ADP-ribosylation of small molecules but also signal transduction events via enzymatic nucleoside modification by toxin-related enzymes.
Collapse
Affiliation(s)
- Tsuyoshi Nakano
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ghosh D, Sobro IF, Hallenbeck PC. Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. BIORESOURCE TECHNOLOGY 2012; 123:199-206. [PMID: 22940320 DOI: 10.1016/j.biortech.2012.07.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 05/08/2023]
Abstract
Hydrogen production from glucose via single-stage photofermentation was examined with the photosynthetic bacterium Rhodobacter capsulatus JP91 (hup-). Response surface methodology with Box-Behnken design was used to optimize the independent experimental variables of glucose concentration, glutamate concentration and light intensity, as well as examining their interactive effects for maximization of molar hydrogen yield. Under optimal condition with a light intensity of 175W/m(2), 35mM glucose, and 4.5mM glutamate, a maximum hydrogen yield of 5.5 (±0.15)molH(2)/molglucose, and a maximum nitrogenase activity of 246 (±3.5)nmolC(2)H(4)/ml/min were obtained. Densitometric analysis of nitrogenase Fe-protein expression under different conditions showed significant variation in Fe-protein expression with a maximum at the optimized central point. Even under optimum conditions for hydrogen production, a significant fraction of the Fe-protein was found in the ADP-ribosylated state, suggesting that further improvement in yields might be possible.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
26
|
Rademacher C, Hoffmann MC, Lackmann JW, Moser R, Pfänder Y, Leimkühler S, Narberhaus F, Masepohl B. Tellurite resistance gene trgB confers copper tolerance to Rhodobacter capsulatus. Biometals 2012; 25:995-1008. [PMID: 22767205 DOI: 10.1007/s10534-012-9566-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022]
Abstract
To identify copper homeostasis genes in Rhodobacter capsulatus, we performed random transposon Tn5 mutagenesis. Screening of more than 10,000 Tn5 mutants identified tellurite resistance gene trgB as a so far unrecognized major copper tolerance determinant. The trgB gene is flanked by tellurite resistance gene trgA and cysteine synthase gene cysK2. While growth of trgA mutants was only moderately restricted by tellurite, trgB and cysK2 mutants were severely affected by tellurite, which implies that viability under tellurite stress requires increased cysteine levels. Mutational analyses revealed that trgB was the only gene in this chromosomal region conferring cross-tolerance towards copper. Expression of the monocistronic trgB gene required promoter elements overlapping the trgA coding region as shown by nested deletions. Neither copper nor tellurite affected trgB transcription as demonstrated by reverse transcriptase PCR and trgB-lacZ fusions. Addition of tellurite or copper gave rise to increased cellular tellurium and copper concentrations, respectively, as determined by inductively coupled plasma-optical emission spectroscopy. By contrast, cellular iron concentrations remained fairly constant irrespective of tellurite or copper addition. This is the first study demonstrating a direct link between copper and tellurite response in bacteria.
Collapse
Affiliation(s)
- Corinna Rademacher
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
A T7 RNA polymerase-based toolkit for the concerted expression of clustered genes. J Biotechnol 2012; 159:162-71. [PMID: 22285639 DOI: 10.1016/j.jbiotec.2012.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/16/2011] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
Abstract
Bacterial genes whose enzymes are either assembled into complex multi-domain proteins or form biosynthetic pathways are frequently organized within large chromosomal clusters. The functional expression of clustered genes, however, remains challenging since it generally requires an expression system that facilitates the coordinated transcription of numerous genes irrespective of their natural promoters and terminators. Here, we report on the development of a novel expression system that is particularly suitable for the homologous expression of multiple genes organized in a contiguous cluster. The new expression toolkit consists of an Ω interposon cassette carrying a T7 RNA polymerase specific promoter which is designed for promoter tagging of clustered genes and a small set of broad-host-range plasmids providing the respective polymerase in different bacteria. The uptake hydrogenase gene locus of the photosynthetic non-sulfur purple bacterium Rhodobacter capsulatus which consists of 16 genes was used as an example to demonstrate functional expression only by T7 RNA polymerase but not by bacterial RNA polymerase. Our findings clearly indicate that due to its unique properties T7 RNA polymerase can be applied for overexpression of large and complex bacterial gene regions.
Collapse
|
28
|
Modeling And Optimization of Hydrogen Production By The Photosynthetic Bacterium Rhodobacter capsulatus By The Methodology Of Design Of Experiments (DOE): Interaction Between Lactate Concentration And Light Luminosity. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.egypro.2012.09.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
30
|
How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl Environ Microbiol 2011; 78:1023-32. [PMID: 22179236 DOI: 10.1128/aem.07254-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase catalyzes the conversion of dinitrogen gas (N(2)) and protons to ammonia and hydrogen gas (H(2)). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H(2) when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated P(II) protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H(2) production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H(2) production by ammonium-grown NifA* cells.
Collapse
|
31
|
Keskin T, Abo-Hashesh M, Hallenbeck PC. Photofermentative hydrogen production from wastes. BIORESOURCE TECHNOLOGY 2011; 102:8557-8568. [PMID: 21530244 DOI: 10.1016/j.biortech.2011.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/01/2011] [Accepted: 04/03/2011] [Indexed: 05/30/2023]
Abstract
In many respects, hydrogen is an ideal biofuel. However, practical, sustainable means of its production are presently lacking. Here we review recent efforts to apply the capacity of photosynthetic bacteria to capture solar energy and use it to drive the nearly complete conversion of substrates to hydrogen and carbon dioxide. This process, called photofermentation, has the potential capacity to use a variety of feedstocks, including the effluents of dark fermentations, leading to the development of various configurations of two-stage systems, or various industrial and agricultural waste streams rich in sugars or organic acids. The metabolic and enzymatic properties of this system are presented and the possible waste streams that might be successfully used are discussed. Recently, various immobilized systems have been developed and their advantages and disadvantages are examined.
Collapse
Affiliation(s)
- Tugba Keskin
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
32
|
Müller A, Schlicker C, Fehringer M, Masepohl B, Hofmann E. Expression, purification, crystallization and preliminary X-ray analysis of the DNA-binding domain of Rhodobacter capsulatus MopB. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:377-9. [PMID: 21393847 DOI: 10.1107/s1744309110054710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022]
Abstract
The LysR-type regulator MopB represses transcription of several target genes (including the nitrogen-fixation gene anfA) in Rhodobacter capsulatus at high molybdenum concentrations. In this study, the isolated DNA-binding domain of MopB (MopBHTH) was overexpressed in Escherichia coli. Purified MopBHTH bound the anfA promoter as shown by DNA mobility-shift assays, demonstrating the function of the isolated regulator domain. MopBHTH was crystallized using the sitting-drop vapour-diffusion method in the presence of 0.2 M lithium sulfate, 0.1 M phosphate/citrate pH 4.2, 20%(w/v) PEG 1000 at 291 K. The crystal belonged to space group P3(1)21 or P3(2)21, with unit-cell parameters a=b=61.84, c=139.64 Å, α=β=90, γ=120°, and diffracted to 3.3 Å resolution at a synchrotron source.
Collapse
Affiliation(s)
- Alexandra Müller
- Lehrstuhl für Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|