1
|
Gheorghe AM, Stanciu M, Lebada IC, Nistor C, Carsote M. An Updated Perspective of the Clinical Features and Parathyroidectomy Impact in Primary Hyperparathyroidism Amid Multiple Endocrine Neoplasia Type 1 (MEN1): Focus on Bone Health. J Clin Med 2025; 14:3113. [PMID: 40364143 PMCID: PMC12072311 DOI: 10.3390/jcm14093113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Multiple endocrine neoplasia type 1 (MEN1)-related primary hyperparathyroidism (MPHPT) belongs to genetic PHPT that accounts for 10% of all PHPT cases, being considered the most frequent hereditary PHPT (less than 5% of all PHPT). Objective: We aimed to provide an updated clinical perspective with a double purpose: to highlight the clinical features in MPHPT, particularly, the bone health assessment, as well as the parathyroidectomy (PTx) impact. Methods: A comprehensive review of the latest 5-year, English-published, PubMed-accessed original studies. Results: The sample-based analysis (n = 17 studies) enrolled 2426 subjects (1720 with MPHPT). The study design was retrospective, except for one prospective and one case-control study. The maximum number of patients per study was of 517. Female predominance (an overall female-to-male ratio of 1.139) was confirmed (except for three studies). Age at MPHPT diagnosis (mean/median per study): 28.7 to 43.1 years; age at PTx: 32 to 43.5 years. Asymptomatic PHPT was reported in 38.3% to 67% of MPHPT. Mean total calcium varied between 1.31 and 2.88 mmol/L and highest PTH was of 317.2 pg/mL. Two studies reported similar PTH and calcaemic levels in MPHPT vs. sporadic PHPT, while another found higher values in MPHPT. Symptomatic vs. asymptomatic patients with MPHPT had similar PTH and serum calcium levels (n = 1). Osteoporosis (n = 8, N = 723 with MPHPT) was reported in 10% to 55.5% of cases, osteopenia in 5.88% to 43.9% (per study); overall fracture rate was 10% (of note, one study showed 0%). Lower bone mineral density (BMD) at DXA (n = 4) in MPHPT vs. sporadic PHPT/controls was found by some studies (n = 3, and only a single study provided third distal radius DXA-BMD assessment), but not all (n = 1). Post-PTx DXA (n = 3, N = 190 with MPHPT) showed a BMD increase (e.g., +8.5% for lumbar spine, +2.1% for total hip, +4.3% for femoral neck BMD); however, post-operatory, BMD remains lower than controls. Trabecular bone score (TBS) analysis (n = 2, N = 142 with MPHPT vs. 397 with sporadic PHPT) showed a higher prevalence of reduced TBS (n = 1) or similar (n = 1). PTx analysis in MPHPT (n = 14): rate of subtotal PTx of 39% to 66.7% (per study) or less than subtotal PTx of 46.9% (n = 1). Post-PTx complications: persistent PHPT (5.6% to 25%), recurrent PHPT (16.87% to 30%, with the highest re-operation rate of 71% in one cohort); hypoparathyroidism (12.4% to 41.7%). Genetic analysis pointed out a higher risk of post-PTx recurrence in exon 10 MEN1 pathogenic variant. Post-PTx histological exam showed a multi-glandular disease in 40% to 52.1% of MPHPT, and a parathyroid carcinoma prevalence of 1%. Conclusions: MPHPT remains a challenging ailment amid a multi-layered genetic syndrome. Current data showed a lower age at MPHPT diagnosis and surgery than found in general population, and a rate of female predominance that is lower than seen in sporadic PHPT cases, but higher than known, for instance, in MEN2. The bone involvement showed heterogeneous results, more consistent for a lower BMD, but not necessarily for a lower TBS vs. controls. PTx involves a rather high rate of recurrence, persistence and redo surgery. About one out of ten patients with MPHPT might have a prevalent fracture and PTx improves the overall bone health, but seems not to restore it to the general population level, despite the young age of the subjects. This suggests that non-parathyroid components and potentially menin protein displays negative bone effects in MEN1.
Collapse
Affiliation(s)
- Ana-Maria Gheorghe
- PhD Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Mihaela Stanciu
- Department of Endocrinology, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
- Department of Endocrinology, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Ioana Codruta Lebada
- Department of Endocrinology, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Thoracic Surgery Department, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
2
|
Cetani F, Dinoi E, Pierotti L, Pardi E. Familial states of primary hyperparathyroidism: an update. J Endocrinol Invest 2024; 47:2157-2176. [PMID: 38635114 DOI: 10.1007/s40618-024-02366-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Familial primary hyperparathyroidism (PHPT) includes syndromic and non-syndromic disorders. The former are characterized by the occurrence of PHPT in association with extra-parathyroid manifestations and includes multiple endocrine neoplasia (MEN) types 1, 2, and 4 syndromes, and hyperparathyroidism-jaw tumor (HPT-JT). The latter consists of familial hypocalciuric hypercalcemia (FHH) types 1, 2 and 3, neonatal severe primary hyperparathyroidism (NSHPT), and familial isolated primary hyperparathyroidism (FIHP). The familial forms of PHPT show different levels of PHPT penetrance, developing earlier and with multiglandular involvement compared to sporadic counterpart. All these diseases exhibit Mendelian inheritance patterns, and for most of them, the genes responsible have been identified. DNA testing for predisposing mutations is helpful in index cases or in individuals with a high suspicion of the disease. Early recognition of hereditary disorders of PHPT is of great importance for the best clinical and surgical approach. Genetic testing is useful in routine clinical practice because it will also involve appropriate screening for extra-parathyroidal manifestations related to the syndrome as well as the identification of asymptomatic carriers of the mutation. PURPOSE The aim of the review is to discuss the current knowledge on the clinical and genetic profile of these disorders along with the importance of genetic testing in clinical practice.
Collapse
Affiliation(s)
- F Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - E Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - E Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Băicoianu-Nițescu LC, Gheorghe AM, Carsote M, Dumitrascu MC, Sandru F. Approach of Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome-Related Skin Tumors. Diagnostics (Basel) 2022; 12:2768. [PMID: 36428828 PMCID: PMC9689678 DOI: 10.3390/diagnostics12112768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Non-endocrine findings in patients with MEN1 (multiple endocrine neoplasia) syndrome also include skin lesions, especially tumor-type lesions. This is a narrative review of the English-language medical literature including original studies concerning MEN1 and dermatological issues (apart from dermatologic features of each endocrine tumor/neuroendocrine neoplasia), identified through a PubMed-based search (based on clinical relevance, with no timeline restriction or concern regarding the level of statistical significance). We identified 27 original studies involving clinical presentation of patients with MEN1 and cutaneous tumors; eight other original studies that also included the genetic background; and four additional original studies were included. The largest cohorts were from studies in Italy (N = 145 individuals), Spain (N = 90), the United States (N = 48 and N = 32), and Japan (N = 28). The age of patients varied from 18 to 76 years, with the majority of individuals in their forties. The most common cutaneous tumors are angiofibromas (AF), collagenomas (CG), and lipomas (L). Other lesions are atypical nevi, basocellular carcinoma, squamous cell carcinoma, acrochordons, papillomatosis confluens et reticularis, gingival papules, and cutaneous T-cell lymphoma of the eyelid. Non-tumor aspects are confetti-like hypopigmentation, café-au-lait macules, and gingival papules. MEN1 gene, respective menin involvement has also been found in melanomas, but the association with MEN1 remains debatable. Typically, cutaneous tumors (AF, CG, and L) are benign and are surgically treated only for cosmetic reasons. Some of them are reported as first presentation. Even though skin lesions are not pathognomonic, recognizing them plays an important role in early identification of MEN1 patients. Whether a subgroup of MEN1 subjects is prone to developing these types of cutaneous lesions and how they influence MEN1 evolution is still an open issue.
Collapse
Affiliation(s)
| | - Ana-Maria Gheorghe
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, C. Davila University of Medicine and Pharmacy & C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynaecology, C. Davila University of Medicine and Pharmacy & University Emergency Hospital, 050474 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatology, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Department of Dermatology, C. Davila University of Medicine and Pharmacy & Elias University Emergency Hospital, 011368 Bucharest, Romania
| |
Collapse
|
4
|
Troka I, Griffanti G, Canaff L, Hendy GN, Goltzman D, Nazhat SN. Effect of Menin Deletion in Early Osteoblast Lineage on the Mineralization of an In Vitro 3D Osteoid-like Dense Collagen Gel Matrix. Biomimetics (Basel) 2022; 7:biomimetics7030101. [PMID: 35892371 PMCID: PMC9329857 DOI: 10.3390/biomimetics7030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prx1-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro.
Collapse
Affiliation(s)
- Ildi Troka
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
| | - Lucie Canaff
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Geoffrey N. Hendy
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
- Correspondence:
| |
Collapse
|
5
|
Gorbacheva A, Eremkina A, Goliusova D, Krupinova J, Mokrysheva N. The role of menin in bone pathology. Endocr Connect 2022; 11:EC-21-0494.R2. [PMID: 35148273 PMCID: PMC8942318 DOI: 10.1530/ec-21-0494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.
Collapse
Affiliation(s)
- Anna Gorbacheva
- Endocrinology Research Center, Moscow, Russian Federation
- Correspondence should be addressed to A Gorbacheva:
| | - Anna Eremkina
- Endocrinology Research Center, Moscow, Russian Federation
| | | | | | | |
Collapse
|
6
|
Bronte G, Ulivi P, Verlicchi A, Cravero P, Delmonte A, Crinò L. Targeting RET-rearranged non-small-cell lung cancer: future prospects. LUNG CANCER-TARGETS AND THERAPY 2019; 10:27-36. [PMID: 30962732 PMCID: PMC6433115 DOI: 10.2147/lctt.s192830] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-small-cell lung cancer (NSCLC) patients with mutated or rearranged oncogene drivers can be treated with upfront selective inhibitors achieving higher response rates and longer survival than chemotherapy. The RET gene can undergo chromosomal rearrangements in 1%–2% of all NSCLC patients, involving various upstream fusion partners such as KIF5B, CCDC6, NCOA4, and TRIM33. Many multikinase inhibitors are active against rearranged RET. Cabozantinib, vandetanib, sunitinib, lenvatinib, and nintedanib achieved tumor responses in about 30% of these patients in retrospective studies. Prospective phase II trials investigated the activity and toxicity of cabozantinib, vandetanib, sorafenib, and lenvatinib, and did not reach significantly higher response rates. VEGFR and EGFR inhibition represented the main ways of developing off-target toxicity. An intrinsic resistance emerged according to the type of RET fusion partners, as KIF5B-RET fusion is the most resistant. Also acquired mutations in rearranged RET oncogene developed as resistance to these multikinase inhibitors. Interestingly, RET fusions have been found as a resistance mechanism to EGFR-TKIs in EGFR-mutant NSCLC patients. The combination of EGFR and RET inhibition can overcome this resistance. The limitations in terms of activity and tolerability of the various multikinase inhibitors prompted the investigation of new highly selective RET inhibitors, such as RXDX-105, BLU-667, and LOXO-292. Some data emerged about intracranial antitumor activity of BLU-667 and LOXO-292. If these novel drugs will achieve high activity in RET rearranged NSCLC, also these oncogene-addicted tumors can undergo a significant survival improvement.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Paola Ulivi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Alberto Verlicchi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Paola Cravero
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| |
Collapse
|
7
|
Kamilaris CDC, Stratakis CA. Multiple Endocrine Neoplasia Type 1 (MEN1): An Update and the Significance of Early Genetic and Clinical Diagnosis. Front Endocrinol (Lausanne) 2019; 10:339. [PMID: 31263451 PMCID: PMC6584804 DOI: 10.3389/fendo.2019.00339] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare hereditary tumor syndrome inherited in an autosomal dominant manner and characterized by a predisposition to a multitude of endocrine neoplasms primarily of parathyroid, enteropancreatic, and anterior pituitary origin, as well as nonendocrine neoplasms. Other endocrine tumors in MEN1 include foregut carcinoid tumors, adrenocortical tumors, and rarely pheochromocytoma. Nonendocrine manifestations include meningiomas and ependymomas, lipomas, angiofibromas, collagenomas, and leiomyomas. MEN1 is caused by inactivating mutations of the tumor suppressor gene MEN1 which encodes the protein menin. This syndrome can affect all age groups, with 17% of patients developing MEN1-associated tumors before 21 years of age. Despite advances in the diagnosis and treatment of MEN1-associated tumors, patients with MEN1 continue to have decreased life expectancy primarily due to malignant neuroendocrine tumors. The most recent clinical practice guidelines for MEN1, published in 2012, highlight the need for early genetic and clinical diagnosis of MEN1 and recommend an intensive surveillance approach for both patients with this syndrome and asymptomatic carriers starting at the age of 5 years with the goal of timely detection and management of MEN1-associated neoplasms and ultimately decreased disease-specific morbidity and mortality. Unfortunately, there is no clear genotype-phenotype correlation and individual mutation-dependent surveillance is not possible currently.
Collapse
|
8
|
Iyer S, Agarwal SK. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J Mol Endocrinol 2018; 61:R13-R24. [PMID: 29615472 PMCID: PMC5966343 DOI: 10.1530/jme-18-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation is emerging as a key feature in the molecular characteristics of various human diseases. Epigenetic aberrations can occur from mutations in genes associated with epigenetic regulation, improper deposition, removal or reading of histone modifications, DNA methylation/demethylation and impaired non-coding RNA interactions in chromatin. Menin, the protein product of the gene causative for the multiple endocrine neoplasia type 1 (MEN1) syndrome, interacts with chromatin-associated protein complexes and also regulates some non-coding RNAs, thus participating in epigenetic control mechanisms. Germline inactivating mutations in the MEN1 gene that encodes menin predispose patients to develop endocrine tumors of the parathyroids, anterior pituitary and the duodenopancreatic neuroendocrine tissues. Therefore, functional loss of menin in the various MEN1-associated endocrine cell types can result in epigenetic changes that promote tumorigenesis. Because epigenetic changes are reversible, they can be targeted to develop therapeutics for restoring the tumor epigenome to the normal state. Irrespective of whether epigenetic alterations are the cause or consequence of the tumorigenesis process, targeting the endocrine tumor-associated epigenome offers opportunities for exploring therapeutic options. This review presents epigenetic control mechanisms relevant to the interactions and targets of menin, and the contribution of epigenetics in the tumorigenesis of endocrine cell types from menin loss.
Collapse
Affiliation(s)
- Sucharitha Iyer
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Ji S, Yang W, Liu J, Zhao J, Chen L, Ni Q, Long J, Yu X. High throughput gene sequencing reveals altered landscape in DNA damage responses and chromatin remodeling in sporadic pancreatic neuroendocrine tumors. Pancreatology 2018; 18:318-327. [PMID: 29395620 DOI: 10.1016/j.pan.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The main objectives of this retrospective study were to survey the genetic landscape of PNETs in a clinical cohort by using the high throughput gene sequencing method and to determine cellular signaling networks affected by the uncovered gene mutations. MATERIALS AND METHODS We retrieved the demographics and tumor characteristics of 13 patients. Cellular DNA was extracted from fresh snap frozen tumor tissues and was subject to high throughput gene sequencing analysis using the Illumina NextSeq500 System. Furthermore, the interaction network was constructed from the input gene set by Reactome and performed gene set enrichment analysis was performed with a cutoff FDR of ≤0.01. RESULTS Totally 74 mutated genes and 93 mutations were identified. The median number of mutations was 7 (range 1-20) and that of mutated genes was 6 (range 1-17). Among these mutations, 48 (51.6%) were substitution mutations, nine (9.7%) were duplication mutations, 28 (30.1%) were deletion mutations and eight (8.6%) were deletion/insertion mutations. Gene set enrichment analysis generated a network of 21 interactions, 10 of which were associated with DNA repair like the Fanconi anemia pathway, nucleotide excision repair, and homologous recombination repair, or chromosome maintenance. Moreover, 9 patients had one or more mutations in DNA repair genes including the mismatch repair genes MSH2/MSH6. CONCLUSIONS The study has uncovered genetic alterations of genes implicated in DNA damage responses and chromatin remodeling. Our findings will prompt further studies into the role of these mutated genes in the oncogenesis and molecular stratification of PNETs.
Collapse
Affiliation(s)
- Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | | | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | | | - Liang Chen
- Genenexus Technology Corporation, 200433, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Long
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Agarwal SK. Molecular Genetics of MEN1-Related Neuroendocrine Tumors. DIAGNOSTIC AND THERAPEUTIC NUCLEAR MEDICINE FOR NEUROENDOCRINE TUMORS 2017:47-64. [DOI: 10.1007/978-3-319-46038-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Liu IH, Ford JM, Kunz PL. DNA-repair defects in pancreatic neuroendocrine tumors and potential clinical applications. Cancer Treat Rev 2015; 44:1-9. [PMID: 26924193 DOI: 10.1016/j.ctrv.2015.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The role of DNA repair in pathogenesis and response to treatment is not well understood in pancreatic neuroendocrine tumors (pNETs). However, the existing literature reveals important preliminary trends and targets in the genetic landscape of pNETs. Notably, pNETs have been shown to harbor defects in the direct reversal MGMT gene and the DNA mismatch repair genes, suggesting that these genes may be strong candidates for further prospective studies. METHODS PubMed searches were conducted for original studies assessing the DNA repair genes MGMT and MMR in pNETs, as well as for PTEN and MEN1, which are not directly DNA repair genes but are involved in DNA repair pathways. Searches were specific to pNETs, yielding five original studies on MGMT and four on MMR. Six original papers studied PTEN in pNETs. Five studied MEN1 in pNETs, and two others implicated MEN1 in DNA repair processes. RESULTS The five studies on MGMT in pNET tumor samples found MGMT loss of between 24% and 51% of tumor samples by IHC staining and between 0% and 40% by promoter hypermethylation, revealing discrepancies in methods assessing MGMT expression as well as potential weaknesses in the correlation between MGMT IHC expression and promoter hypermethylation rates. Four studies on MMR in pNET tumor samples indicated similar ambiguities, as promoter hypermethylation of the MLH1 MMR gene ranged from 0% to 31% of pNETs, while IHC staining revealed loss of MMR genes in between 0% and 36% of pNETs sampled. Studies also indicated that PTEN and MEN1 are commonly mutated or underexpressed genes in pNETs, although frequency of mutation or loss of expression was again variable among different studies. CONCLUSION Further studies are essential in determining a more thorough repertoire of DNA repair defects in pNETs and the clinical significance of these defects. This literature review synthesises the existing knowledge of relevant DNA repair pathways and studies of the specific genes that carry out these repair mechanisms in pNETs.
Collapse
Affiliation(s)
| | - James M Ford
- Stanford University School of Medicine, United States
| | - Pamela L Kunz
- Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, United States.
| |
Collapse
|
13
|
Desai SS, Kharade SS, Parekh VI, Iyer S, Agarwal SK. Pro-oncogenic Roles of HLXB9 Protein in Insulinoma Cells through Interaction with Nono Protein and Down-regulation of the c-Met Inhibitor Cblb (Casitas B-lineage Lymphoma b). J Biol Chem 2015; 290:25595-608. [PMID: 26342078 DOI: 10.1074/jbc.m115.661413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
Pancreatic islet β-cells that lack the MEN1-encoded protein menin develop into tumors. Such tumors express the phosphorylated isoform of the β-cell differentiation transcription factor HLXB9. It is not known how phospho-HLXB9 acts as an oncogenic factor in insulin-secreting β-cell tumors (insulinomas). In this study we investigated the binding partners and target genes of phospho-HLXB9 in mouse insulinoma MIN6 β-cells. Co-immunoprecipitation coupled with mass spectrometry showed a significant association of phospho-HLXB9 with the survival factor p54nrb/Nono (54-kDa nuclear RNA-binding protein, non-POU-domain-containing octamer). Endogenous phospho-HLXB9 co-localized with endogenous Nono in the nucleus. Overexpression of HLXB9 decreased the level of overexpressed Nono but not endogenous Nono. Anti-phospho-HLXB9 chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) identified the c-Met inhibitor, Cblb, as a direct phospho-HLXB9 target gene. Phospho-HLXB9 occupied the promoter of Cblb and reduced the expression of Cblb mRNA. Cblb overexpression or HLXB9 knockdown decreased c-Met protein and reduced cell migration. Also, increased phospho-HLXB9 coincided with reduced Cblb and increased c-Met in insulinomas of two mouse models of menin loss. These data provide mechanistic insights into the role of phospho-HLXB9 as a pro-oncogenic factor by interacting with a survival factor and by promoting the oncogenic c-Met pathway. These mechanisms have therapeutic implications for reducing β-cell proliferation in insulinomas by inhibiting phospho-HLXB9 or its interaction with Nono and modulating the expression of its direct (Cblb) or indirect (c-Met) targets. Our data also implicate the use of pro-oncogenic activities of phospho-HLXB9 in β-cell expansion strategies to alleviate β-cell loss in diabetes.
Collapse
Affiliation(s)
- Shruti S Desai
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Sampada S Kharade
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Vaishali I Parekh
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Sucharitha Iyer
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Sunita K Agarwal
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Kanazawa I, Canaff L, Abi Rafeh J, Angrula A, Li J, Riddle RC, Boraschi-Diaz I, Komarova SV, Clemens TL, Murshed M, Hendy GN. Osteoblast menin regulates bone mass in vivo. J Biol Chem 2015; 290:3910-24. [PMID: 25538250 PMCID: PMC4326801 DOI: 10.1074/jbc.m114.629899] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Menin, the product of the multiple endocrine neoplasia type 1 (Men1) tumor suppressor gene, mediates the cell proliferation and differentiation actions of transforming growth factor-β (TGF-β) ligand family members. In vitro, menin modulates osteoblastogenesis and osteoblast differentiation promoted and sustained by bone morphogenetic protein-2 (BMP-2) and TGF-β, respectively. To examine the in vivo function of menin in bone, we conditionally inactivated Men1 in mature osteoblasts by crossing osteocalcin (OC)-Cre mice with floxed Men1 (Men1(f/f)) mice to generate mice lacking menin in differentiating osteoblasts (OC-Cre;Men1(f/f) mice). These mice displayed significant reduction in bone mineral density, trabecular bone volume, and cortical bone thickness compared with control littermates. Osteoblast and osteoclast number as well as mineral apposition rate were significantly reduced, whereas osteocyte number was increased. Primary calvarial osteoblasts proliferated more quickly but had deficient mineral apposition and alkaline phosphatase activity. Although the mRNA expression of osteoblast marker and cyclin-dependent kinase inhibitor genes were all reduced, that of cyclin-dependent kinase, osteocyte marker, and pro-apoptotic genes were increased in isolated Men1 knock-out osteoblasts compared with controls. In contrast to the knock-out mice, transgenic mice overexpressing a human menin cDNA in osteoblasts driven by the 2.3-kb Col1a1 promoter, showed a gain of bone mass relative to control littermates. Osteoblast number and mineral apposition rate were significantly increased in the Col1a1-Menin-Tg mice. Therefore, osteoblast menin plays a key role in bone development, remodeling, and maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the Veterans Administration Medical Center, Baltimore, Maryland 21201
| | | | | | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the Veterans Administration Medical Center, Baltimore, Maryland 21201
| | | | - Geoffrey N Hendy
- From the Departments of Medicine, Physiology, Human Genetics, and Calcium Research Laboratory, and Hormones and Cancer Research Unit, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada,
| |
Collapse
|
15
|
Drouin J. Minireview: pioneer transcription factors in cell fate specification. Mol Endocrinol 2014; 28:989-98. [PMID: 24825399 DOI: 10.1210/me.2014-1084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The specification of cell fate is critical for proper cell differentiation and organogenesis. In endocrine tissues, this process leads to the differentiation, often a multistep process, of hormone-producing cells. This process is driven by a combination of transcription factors (TFs) that includes general factor, tissue-restricted, and/or cell-restricted factors. The last 2 decades have seen the discovery of many TFs of restricted expression and function in endocrine tissues. These factors are typically critical for expression of hormone-coding genes as well as for differentiation and proper function of hormone-producing cells. Further, genes encoding these tissue-restricted TFs are themselves subject to mutations that cause hormone deficiencies. Although the model that emerged from these 2 decades is one in which a specific combination of TFs drives a unique cell specification and genetic program, recent findings have led to the discovery of TFs that have the unique property of being able to remodel chromatin and thus modify the epigenome. Most importantly, such factors, known as pioneer TFs, appear to play critical roles in programming the epigenome during the successive steps involved in cell specification. This review summarizes our current understanding of the mechanisms for pioneer TF remodeling of chromatin. Currently, very few TFs that have proven pioneer activity are known, but it will be critical to identify these factors and understand their mechanisms of action if we are to harness the potential of regenerative therapies in endocrinology.
Collapse
Affiliation(s)
- Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, Quebec, H2W 1R7 Canada
| |
Collapse
|
16
|
Abstract
Menin, a product of the MEN1 gene, is related to the ontogeny of several cancers such as MEN1 and sporadic endocrine tumors, although it is considered to be a tumor suppressor. Many proteins interact with menin, and it is involved in various biological functions in several tissues. Menin plays some physiological and pathological roles related to transforming growth factor-beta (TGF-β) signaling pathway in the parathyroid, and it is implicated in the tumorigenesis of parathyroid tumors. In bone, the bone phenotype was observed in some menin-deleted mice. Menin is considered to support BMP-2- and Runx2-induced differentiation of mesenchymal cells into osteoblasts by interacting with Smad1/5, Runx2, β-catenin and LEF-1, although it has different effects on osteoblasts at later differentiation stages through TGF-β-Smad3 and AP-1 pathways. Further research is expected to shed more light on the role of menin in bone.
Collapse
Affiliation(s)
- Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|
17
|
Canaff L, Vanbellinghen JF, Kanazawa I, Kwak H, Garfield N, Vautour L, Hendy GN. Menin missense mutants encoded by the MEN1 gene that are targeted to the proteasome: restoration of expression and activity by CHIP siRNA. J Clin Endocrinol Metab 2012; 97:E282-91. [PMID: 22090276 DOI: 10.1210/jc.2011-0241] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT In multiple endocrine neoplasia type 1 (MEN1) characterized by tumors of parathyroid, enteropancreas, and anterior pituitary, missense mutations in the MEN1 gene product, menin, occur in a subset of cases. The mutant proteins are degraded by the proteasome. However, whether their expression and activity can be restored is not known. OBJECTIVE Our objective was to functionally characterize a panel of 16 menin missense mutants, including W423R and S443Y identified in new MEN1 families, with respect to protein stability, targeting to the proteasome and restoration of expression by proteasome inhibitors and expression and function by small interfering RNA technology. METHODS Flag-tagged wild-type (WT) and missense menin mutant expression vectors were transiently transfected in human embryonic kidney (HEK293) and/or rat insulinoma (Rin-5F) cells. RESULTS The majority of mutants were short-lived, whereas WT menin was stable. Proteasome inhibitors MG132 and PS-341 and inhibition of the chaperone, heat-shock protein 70 (Hsp70), or the ubiquitin ligase, COOH terminus of Hsp70-interacting protein (CHIP), by specific small interfering RNA, restored the levels of the mutants, whereas that of WT menin was largely unaffected. Inhibition of CHIP restored the ability of mutants to mediate normal functions of menin: TGF-β up-regulation of the promoters of its target genes, the cyclin-dependent kinase inhibitors p15 and p21 as well as TGF-β inhibition of cell numbers. CONCLUSION When the levels of missense menin mutants that are targeted to the proteasome are normalized they may function similarly to WT menin. Potentially, targeting specific components of the proteasome chaperone pathway could be beneficial in treating a subset of MEN1 cases.
Collapse
Affiliation(s)
- Lucie Canaff
- Department of Medicine, Calcium Research Laboratory, and Hormones and Cancer Research Unit, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Canaff L, Vanbellinghen JF, Kaji H, Goltzman D, Hendy GN. Impaired transforming growth factor-β (TGF-β) transcriptional activity and cell proliferation control of a menin in-frame deletion mutant associated with multiple endocrine neoplasia type 1 (MEN1). J Biol Chem 2012; 287:8584-97. [PMID: 22275377 DOI: 10.1074/jbc.m112.341958] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is characterized by tumors of the parathyroid, enteropancreas, and anterior pituitary. The MEN1 gene encodes the tumor suppressor menin of 610 amino acids that has multiple protein partners and activities. The particular pathways that, when lost, lead to tumorigenesis are not known. We demonstrated that members of a three-generation MEN1 kindred are heterozygous for a donor splice site mutation at the beginning of intron 3 (IVS3 + 1G→A). Lymphoblastoid cells of a mutant gene carrier had, in addition to the wild-type menin transcript, an aberrant transcript resulting from use of a cryptic splice site within exon III that splices to the start of exon IV. The predicted menin Δ(184-218) mutant has an in-frame deletion of 35 amino acids but is otherwise of wild-type sequence. The transfected menin Δ(184-218) mutant was well expressed and fully able to mediate the normal inhibition of the activity of the transcriptional regulators JunD and NF-κB. However, it was defective in mediating TGF-β-stimulated Smad3 action in promoter-reporter assays in insulinoma cells. Importantly, lymphoblastoid cells from an individual heterozygous for the mutation had reduced TGF-β-induced (Smad3) transcriptional activity but normal JunD and NF-κB function. In addition, the mutant gene carrier lymphoblastoid cells proliferated faster and were less responsive to the cytostatic effects of TGF-β than cells from an unaffected family member. In conclusion, the menin mutant exhibits selective loss of the TGF-β signaling pathway and loss of cell proliferation control contributing to the development of MEN1.
Collapse
Affiliation(s)
- Lucie Canaff
- Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | |
Collapse
|
19
|
Nagamura Y, Yamazaki M, Shimazu S, Sano K, Tsukada T, Sakurai A. A novel splice site mutation of the MEN1 gene identified in a patient with primary hyperparathyroidism. Endocr J 2012; 59:523-30. [PMID: 22447146 DOI: 10.1507/endocrj.ej12-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Heterozygous germline mutation of the tumor suppressor gene MEN1 is responsible for multiple endocrine neoplasia type 1 (MEN1), a familial cancer syndrome characterized by pituitary, parathyroid and enteropancreatic tumors. Various mutations have been identified throughout the entire gene region in patients with MEN1 and its incomplete forms often manifested as familial isolated hyperparathyroidism and apparently sporadic parathyroid tumor. Mutation analysis of the MEN1 gene is a powerful tool for the early diagnosis of MEN1; however, the clinical significance of the identified mutations is not always obvious. In this study, a previously unreported missense MEN1 mutation, c.824G>T was identified in a patient with primary hyperparathyroidism and evaluated for its pathogenicity. This mutation was predicted to generate a putative missense menin protein, R275M. A stability test of the menin protein demonstrated that the stability of R275M mutant was reduced only slightly as compared with wild type menin, and therefore could not preclude the possibility that it was a rare benign polymorphism. However, further analysis of leukocyte mRNA and minigene experiments indicated that the mutant c.824G>T allele gives rise to abnormally spliced menin mRNA, and thereby confirmed that c.824G>T mutation is causative for MEN1. Thus, leukocyte mRNA analysis has been demonstrated useful to identify a splicing mutation of the MEN1 gene.
Collapse
Affiliation(s)
- Yuko Nagamura
- Division of Familial Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Nagamura Y, Yamazaki M, Shimazu S, Tsukada T, Sakurai A. Application of an intracellular stability test of a novel missense menin mutant to the diagnosis of multiple endocrine neoplasia type 1. Endocr J 2012; 59:1093-8. [PMID: 22878668 DOI: 10.1507/endocrj.ej12-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Germline MEN1 mutation analysis is a powerful tool for an early diagnosis of multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant familial cancer syndrome characterized by the parathyroid, pituitary and gastroenteropancreatic endocrine tumors. However, the clinical significance of MEN1 gene variants, especially missense and in-frame mutations as well as some splicing mutations, is not always obvious. We have previously shown that mutant menin proteins associated with MEN1 are rapidly degraded by the ubiquitin-proteasome pathway. We also demonstrated by a fluorescent immunocytochemical stability test that the stability of missense and in-frame deletion mutants varies widely but that unstable mutants were found only in MEN1 and related disorders and not in normal polymorphisms. In the present study, we evaluated by this stability test the pathogenicity of a novel MEN1 missense mutation, c.1118C>T, encoding a P373L mutant menin, identified in a suspected MEN1 patient. The results demonstrated that the mutant menin is highly unstable, indicating that this mutation is causative for MEN1. These findings encouraged us to proceed with presymptomatic genetic screening for this mutation among the family members, which resulted in the identification of asymptomatic mutation carriers. Thus, the information from the menin stability test was useful for genetic diagnosis and counseling of MEN1 in the case with a previously unreported MEN1 missense mutation.
Collapse
Affiliation(s)
- Yuko Nagamura
- Division of Familial Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | |
Collapse
|
21
|
Mensah-Osman EJ, Veniaminova NA, Merchant JL. Menin and JunD regulate gastrin gene expression through proximal DNA elements. Am J Physiol Gastrointest Liver Physiol 2011; 301:G783-90. [PMID: 21852362 PMCID: PMC3220327 DOI: 10.1152/ajpgi.00160.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/16/2011] [Indexed: 01/31/2023]
Abstract
Mutations in the MEN1 gene correlate with multiple endocrine neoplasia I (MEN1). Gastrinomas are the most malignant of the neuroendocrine tumors associated with MEN1. Because menin and JunD proteins interact, we examined whether JunD binds to and regulates the gastrin gene promoter. Both menin and JunD are ubiquitous nuclear proteins that we showed colocalize in the gastrin-expressing G cells of the mouse antrum. Transfection with a JunD expression vector alone induced endogenous gastrin mRNA in AGS human gastric cells, and the induction was blocked by menin overexpression. We mapped repression by menin to both a nonconsensus AP-1 site and proximal GC-rich elements within the human gastrin promoter. Chromatin immunoprecipitation assays, EMSAs, and DNA affinity precipitation assays documented that JunD and Sp1 proteins bind these two elements and are both targets for menin regulation. Consistent with menin forming a complex with histone deacetylases, we found that repression of gastrin gene expression by menin was reversed by trichostatin A. In conclusion, proximal DNA elements within the human gastrin gene promoter mediate interactions between JunD, which induces gastrin gene expression and menin, which suppresses JunD-mediated activation.
Collapse
Affiliation(s)
- Edith J Mensah-Osman
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, 48109-2200, USA
| | | | | |
Collapse
|
22
|
Boguszewski CL, Bianchet LC, Raskin S, Nomura LM, Borba LA, Cavalcanti TCS. Application of genetic testing to define the surgical approach in a sporadic case of multiple endocrine neoplasia type 1. ACTA ACUST UNITED AC 2010; 54:705-10. [DOI: 10.1590/s0004-27302010000800007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/27/2010] [Indexed: 11/22/2022]
Abstract
We report the use of a genetic test for therapeutic decision making in a case of primary hyperparathyroidism associated with Cushing's disease (CD). A 20-year-old woman was evaluated for gradual weight gain, asthenia, muscle pain, and hypertension. Biochemical and radiologic tests confirmed CD and she underwent transsphenoidal surgery. Immunohistochemistry of the microadenoma was positive for adrenocorticotropic hormone (ACTH). On follow-up, hypercalcemia with high parathyroid hormone (PTH) levels was detected, associated with nephrolithiasis and low bone mineral density in the spine and hip. Parathyroid scintigraphy showed tracer uptake in the inferior region of the left thyroid lobe, and cervical ultrasound showed a heterogeneous nodule in the same area, suggestive of a parathyroid adenoma (PA). Genetic testing detected mutation in the MEN 1 gene and total parathyroidectomy with the implantation of a fragment of one gland in the forearm was performed. Pathology showed a PA and 3 normal parathyroid glands, without hyperplasia, despite the diagnosis of MEN 1. This case illustrates the role of genetic testing in defining the therapeutic approach for sporadic MEN 1.
Collapse
|