1
|
Behrens G, Heissmeyer V. Cooperation of RNA-Binding Proteins – a Focus on Roquin Function in T Cells. Front Immunol 2022; 13:839762. [PMID: 35251035 PMCID: PMC8894612 DOI: 10.3389/fimmu.2022.839762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional gene regulation by RNA-binding proteins (RBPs) is important in the prevention of inflammatory and autoimmune diseases. With respect to T cell activation and differentiation, the RBPs Roquin-1/2 and Regnase-1 play pivotal roles by inducing degradation and/or translational silencing of target mRNAs. These targets encode important proinflammatory mediators and thus Roquin and Regnase-1 functions dampen cellular programs that can lead to inflammation and autoimmune disease. Recent findings demonstrate direct physical interaction of both RBPs. Here, we propose that cooperativity of trans-acting factors may be more generally used to reinforce the regulatory impact on selected targets and promote specific cell fate decisions. We develop this concept for Roquin and Regnase-1 function in resting and activated T cells and discuss the involvement in autoimmunity as well as how the therapeutic potential can be used in anti-tumor therapies.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
- *Correspondence: Vigo Heissmeyer,
| |
Collapse
|
2
|
Salerno F, Turner M, Wolkers MC. Dynamic Post-Transcriptional Events Governing CD8+ T Cell Homeostasis and Effector Function. Trends Immunol 2020; 41:240-254. [DOI: 10.1016/j.it.2020.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
|
3
|
Shi H, Sun H, Li J, Bai Z, Wu J, Li X, Lv Y, Zhang G. Systematic analysis of lncRNA and microRNA dynamic features reveals diagnostic and prognostic biomarkers of myocardial infarction. Aging (Albany NY) 2020; 12:945-964. [PMID: 31927529 PMCID: PMC6977700 DOI: 10.18632/aging.102667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Analyses of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) implicated in myocardial infarction (MI) have increased our understanding of gene regulatory mechanisms in MI. However, it is not known how their expression fluctuates over the different stages of MI progression. In this study, we used time-series gene expression data to examine global lncRNA and miRNA expression patterns during the acute phase of MI and at three different time points thereafter. We observed that the largest expression peak for mRNAs, lncRNAs, and miRNAs occurred during the acute phase of MI and involved mainly protein-coding, rather than non-coding RNAs. Functional analysis indicated that the lncRNAs and miRNAs most sensitive to MI and most unstable during MI progression were usually related to fewer biological functions. Additionally, we developed a novel computational method for identifying dysregulated competing endogenous lncRNA-miRNA-mRNA triplets (LmiRM-CTs) during MI onset and progression. As a result, a new panel of candidate diagnostic biomarkers defined by seven lncRNAs was suggested to have high classification performance for patients with or without MI, and a new panel of prognostic biomarkers defined by two lncRNAs evidenced high discriminatory capability for MI patients who developed heart failure from those who did not.
Collapse
Affiliation(s)
- Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoran Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiayao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyi Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiuhong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingli Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangde Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Peñín I, Figueroa-Cabañas ME, Guerrero-de la Rosa F, Soto-García LA, Álvarez-Martínez R, Flores-Morán A, Acevedo-Whitehouse K. Transcriptional Profiles of California Sea Lion Peripheral NK and CD +8 T Cells Reflect Ecological Regionalization and Infection by Oncogenic Viruses. Front Immunol 2019; 10:413. [PMID: 30915075 PMCID: PMC6422979 DOI: 10.3389/fimmu.2019.00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
The California sea lion is one of the few wild mammals prone to develop cancer, particularly urogenital carcinoma (UGC), whose prevalence is currently estimated at 25% of dead adult sea lions stranded along the California coastline. Genetic factors, viruses and organochlorines have been identified as factors that increase the risk of occurrence of this pathology. Given that no cases of UGC have as yet been reported for the species along its distribution in Mexican waters, the potential relevance of contaminants for the development of urogenital carcinoma is highlighted even more as blubber levels of organochlorines are more than two orders of magnitude lower in the Gulf of California and Mexican Pacific than in California. In vitro studies have shown that organochlorines can modulate anti-viral and tumor-surveillance activities of NK and cytotoxic T-cells of marine mammals, but little is known about the activity of these effectors in live, free-living sea lions. Here, we examine leukocyte transcriptional profiles of free-ranging adult California sea lions for eight genes (Eomes, Granzyme B, Perforin, Ly49, STAT1, Tbx21, GATA3, and FoxP3) selected for their key role in anti-viral and tumor-surveillance, and investigate patterns of transcription that could be indicative of differences in ecological variables and exposure to two oncogenic viruses: sea lion type one gammaherpesvirus (OtHV-1) and sea lion papillomavirus type 1 (ZcPV-1) and systemic inflammation. We observed regional differences in the expression of genes related to Th1 responses and immune modulation, and detected clear patterns of differential regulation of gene expression in sea lions infected by genital papillomavirus compared to those infected by genital gammaherpesvirus or for simultaneous infections, similar to what is known about herpesvirus and papillomavirus infections in humans. Our study is a first approach to profile the transcriptional patterns of key immune effectors of free-ranging California sea lions and their association with ecological regions and oncogenic viruses. The observed results add insight to our understanding of immune competence of marine mammals, and may help elucidate the marked difference in the number of cases of urogenital carcinoma in sea lions from US waters and other areas of their distribution.
Collapse
Affiliation(s)
- Ignacio Peñín
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Mónica E Figueroa-Cabañas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Fabiola Guerrero-de la Rosa
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Luis A Soto-García
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Roberto Álvarez-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Adriana Flores-Morán
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico.,The Marine Mammal Center, Sausalito, CA, United States
| |
Collapse
|
5
|
Díaz-Muñoz MD, Turner M. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Front Immunol 2018; 9:1094. [PMID: 29875770 PMCID: PMC5974052 DOI: 10.3389/fimmu.2018.01094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
6
|
Zhong C, Wei P, Zhang YHP. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons. Biotechnol Bioeng 2016; 114:1054-1064. [PMID: 27943233 DOI: 10.1002/bit.26238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Rare codon in a heterologous gene may cause premature termination of protein synthesis, misincorporation of amino acids, and/or slow translation of mRNA, decreasing the heterologous protein expression. However, its hypothetical function pertaining to functional protein folding has been barely reported. Here, we investigated the effects of selective introduction of synonymous rare codons (SRCs) to two codon-optimized (i.e., rare codon-free) genes sucrose phosphorylase (SP) gene from Thermoanaerobacterium thermosaccharolyticum and amidohydrolase gene from Streptomyces caatingaensis on their expression levels in Escherichia coli BL21(DE3). We investigated the introduction of a single SRC to the coding regions of alpha-helix, beta-strand, or linker in the first half of rare codon-free sp and ah gene. The introduction of a single SRC in the beginning of the coding regions of beta-strand greatly enhanced their soluble expression levels as compared to the other regions. Also, we applied directed evolution to test multi-SRC-containing sp gene mutants for enhanced soluble SP expression levels. To easily identify the soluble SP expression level of colonies growing on Petri dishes, mCherry fluorescent protein was used as a SP-folding reporter when it was fused to the 3' end of the sp gene mutant libraries. After three rounds of screening, the best sp gene mutant containing nine SRCs exhibited an approximately six-fold enhancement in soluble protein expression level as compared to the wild-type and rare codon-free sp control. This study suggests that the selective introduction of SRCs can attenuate translation at specific points and such discontinuous attenuation can temporally separate the translation of segments of the peptide chains and actively coordinates their co-translational folding, resulting in enhanced functional protein expression. Biotechnol. Bioeng. 2017;114: 1054-1064. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chao Zhong
- Department of Biological Systems Engineering, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yi-Heng Percival Zhang
- Department of Biological Systems Engineering, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
7
|
Shi H, Zhang G, Wang J, Wang Z, Liu X, Cheng L, Li W. Studying Dynamic Features in Myocardial Infarction Progression by Integrating miRNA-Transcription Factor Co-Regulatory Networks and Time-Series RNA Expression Data from Peripheral Blood Mononuclear Cells. PLoS One 2016; 11:e0158638. [PMID: 27367417 PMCID: PMC4930172 DOI: 10.1371/journal.pone.0158638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction (MI) is a serious heart disease and a leading cause of mortality and morbidity worldwide. Although some molecules (genes, miRNAs and transcription factors (TFs)) associated with MI have been studied in a specific pathological context, their dynamic characteristics in gene expressions, biological functions and regulatory interactions in MI progression have not been fully elucidated to date. In the current study, we analyzed time-series RNA expression data from peripheral blood mononuclear cells. We observed that significantly differentially expressed genes were sharply up- or down-regulated in the acute phase of MI, and then changed slowly until the chronic phase. Biological functions involved at each stage of MI were identified. Additionally, dynamic miRNA–TF co-regulatory networks were constructed based on the significantly differentially expressed genes and miRNA–TF co-regulatory motifs, and the dynamic interplay of miRNAs, TFs and target genes were investigated. Finally, a new panel of candidate diagnostic biomarkers (STAT3 and ICAM1) was identified to have discriminatory capability for patients with or without MI, especially the patients with or without recurrent events. The results of the present study not only shed new light on the understanding underlying regulatory mechanisms involved in MI progression, but also contribute to the discovery of true diagnostic biomarkers for MI.
Collapse
Affiliation(s)
- Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Guangde Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, PR China
| | - Jing Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Zhenzhen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Xiaoxia Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, PR China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Weimin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, PR China
- * E-mail:
| |
Collapse
|
8
|
Hess AK, Saffert P, Liebeton K, Ignatova Z. Optimization of translation profiles enhances protein expression and solubility. PLoS One 2015; 10:e0127039. [PMID: 25965266 PMCID: PMC4428881 DOI: 10.1371/journal.pone.0127039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/11/2015] [Indexed: 12/12/2022] Open
Abstract
mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs) and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5’-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.
Collapse
Affiliation(s)
- Anne-Katrin Hess
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Paul Saffert
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Zoya Ignatova
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Biochemistry, Department of Chemistry and Biochemistry, University of Hamburg, Hamburg, Germany
- * E-mail: (ZI); (KL)
| |
Collapse
|
9
|
Xiao P, Dong C, Yue Y, Xiong S. Dynamic expression of microRNAs in M2b polarized macrophages associated with systemic lupus erythematosus. Gene 2014; 547:300-9. [DOI: 10.1016/j.gene.2014.06.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/12/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
|
10
|
Czech A, Wende S, Mörl M, Pan T, Ignatova Z. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 2013; 9:e1003767. [PMID: 24009533 PMCID: PMC3757041 DOI: 10.1371/journal.pgen.1003767] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/17/2013] [Indexed: 12/24/2022] Open
Abstract
Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.
Collapse
Affiliation(s)
- Andreas Czech
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Sandra Wende
- Institute for Biochemistry, University of Leipzig, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Leipzig, Germany
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States of America
| | - Zoya Ignatova
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
11
|
Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L, Kreis S. Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res 2013; 41:2817-31. [PMID: 23335783 PMCID: PMC3597666 DOI: 10.1093/nar/gks1471] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed small non-coding RNAs that, in most cases, negatively regulate gene expression at the post-transcriptional level. miRNAs are involved in fine-tuning fundamental cellular processes such as proliferation, cell death and cell cycle control and are believed to confer robustness to biological responses. Here, we investigated simultaneously the transcriptional changes of miRNA and mRNA expression levels over time after activation of the Janus kinase/Signal transducer and activator of transcription (Jak/STAT) pathway by interferon-γ stimulation of melanoma cells. To examine global miRNA and mRNA expression patterns, time-series microarray data were analysed. We observed delayed responses of miRNAs (after 24-48 h) with respect to mRNAs (12-24 h) and identified biological functions involved at each step of the cellular response. Inference of the upstream regulators allowed for identification of transcriptional regulators involved in cellular reactions to interferon-γ stimulation. Linking expression profiles of transcriptional regulators and miRNAs with their annotated functions, we demonstrate the dynamic interplay of miRNAs and upstream regulators with biological functions. Finally, our data revealed network motifs in the form of feed-forward loops involving transcriptional regulators, mRNAs and miRNAs. Additional information obtained from integrating time-series mRNA and miRNA data may represent an important step towards understanding the regulatory principles of gene expression.
Collapse
Affiliation(s)
- Petr V Nazarov
- Genomics Research Unit, Centre de Recherche Public de la Santé, L-1526 Luxembourg, Luxembourg
| | | | | | | | | | | | | |
Collapse
|
12
|
Reinsbach S, Nazarov PV, Philippidou D, Schmitt M, Wienecke-Baldacchino A, Muller A, Vallar L, Behrmann I, Kreis S. Dynamic regulation of microRNA expression following interferon-γ-induced gene transcription. RNA Biol 2012; 9:978-89. [PMID: 22767256 DOI: 10.4161/rna.20494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves need to be tightly, albeit dynamically, regulated. Here, we investigated the dynamic behavior of miRNAs over a wide time range following stimulation of melanoma cells with interferon-γ (IFN-γ), which activates the transcription factor STAT1. By applying several bioinformatic and statistical software tools for visualization and identification of differentially expressed miRNAs derived from time-series microarray experiments, 8.9% of 1105 miRNAs appeared to be directly or indirectly regulated by STAT1. Focusing on distinct dynamic expression patterns, we found that the majority of robust miRNA expression changes occurred in the intermediate time range (24-48 h). Three miRNAs (miR-27a, miR-30a, miR-34a) had a delayed regulation occurring at 72 h while none showed significant expression changes at early time points between 30 min and 6 h. Expression patterns of individual miRNAs were altered gradually over time or abruptly increased or decreased between two time points. Furthermore, we observed coordinated dynamic transcription of most miRNA clusters while few were found to be regulated independently of their genetic cluster. Most interestingly, several "star" or passenger strand sequences were specifically regulated over time while their "guide" strands were not.
Collapse
Affiliation(s)
- Susanne Reinsbach
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|