1
|
Zha S, Liu X, Chen H, Hao Y, Zhang J, Zhang Q, Hu K. Combination of acute intermittent hypoxia and intermittent transcutaneous electrical stimulation in obstructive sleep apnea: a randomized controlled crossover trial. Respir Physiol Neurobiol 2024; 327:104298. [PMID: 38885891 DOI: 10.1016/j.resp.2024.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Intermittent hypoxia (IH) and intermittent transcutaneous electrical stimulation (ITES) might benefit patients with obstructive sleep apnea (OSA). However, the therapeutic value of combined IH and ITES in OSA is unknown. In this prospective, randomized, controlled crossover study, normoxia (air exposure for 50 min before sleep and sham stimulation for 6 h during sleep), IH (5 repeats of 5 min 10-12 % O2 alternating with 5 min air for 50 min, and sham stimulation for 6 h), ITES (air exposure for 50 min and 6 repeats of 30 min transcutaneous electrical stimulation alternating with 30 min of sham stimulation for 6 h), and IH&ITES (10-12 % O2 alternating with air for 50 min and transcutaneous electrical stimulation alternating with sham stimulation for 6 h) were administered to patients with OSA over four single-night sessions. The primary endpoint was difference in OSA severity between the interventions according to apnea-hypopnea index (AHI) and oxygen desaturation index (ODI). The efficacy was response to IH, ITES, IH&ITES defined as a ≥50 % reduction in AHI compared with normoxia. Twenty participants (17 male, 3 female) completed the trial. The median (IQR) AHI decreased from 14.5 (10.8, 17.5) events/h with normoxia to 6.9 (3.9, 14.8) events/h with IH (p=0.020), 5.7 (3.4, 9.1) events/h with ITES (p=0.001), and 3.5 (1.8, 6.4) events/h with IH&ITES (p=0.001). AHI was significantly different between IH and IH&ITES (p=0.042) but not between ITES and IH&ITES (p=0.850). For mild-moderate OSA (n=17), IH, ITES, and IH&ITES had a significant effect on AHI (p=0.013, p=0.001, p=0.001, respectively) compared with normoxia, but there were no differences in post hoc pairwise comparisons between intervention groups. No serious adverse events were observed. In conclusion, IH, ITES, and IH&ITES significantly reduced OSA severity. IH&ITES showed better efficacy in mild-moderate OSA than IH and was comparable to ITES. Our data do not support recommending IH&ITES over ITES for OSA.
Collapse
Affiliation(s)
- Shiqian Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yueying Hao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingyi Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Braegelmann KM, Streeter KA, Fields DP, Baker TL. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control? Exp Neurol 2016; 287:225-234. [PMID: 27456270 DOI: 10.1016/j.expneurol.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
For most individuals, the respiratory control system produces a remarkably stable and coordinated motor output-recognizable as a breath-from birth until death. Very little is understood regarding the processes by which the respiratory control system maintains network stability in the presence of changing physiological demands and network properties that occur throughout life. An emerging principle of neuroscience is that neural activity is sensed and adjusted locally to assure that neurons continue to operate in an optimal range, yet to date, it is unknown whether such homeostatic plasticity is a feature of the neurons controlling breathing. Here, we review the evidence that local mechanisms sense and respond to perturbations in respiratory neural activity, with a focus on plasticity in respiratory motor neurons. We discuss whether these forms of plasticity represent homeostatic plasticity in respiratory control. We present new analyses demonstrating that reductions in synaptic inputs to phrenic motor neurons elicit a compensatory enhancement of phrenic inspiratory motor output, a form of plasticity termed inactivity-induced phrenic motor facilitation (iPMF), that is proportional to the magnitude of activity deprivation. Although the physiological role of iPMF is not understood, we hypothesize that it has an important role in protecting the drive to breathe during conditions of prolonged or intermittent reductions in respiratory neural activity, such as following spinal cord injury or during central sleep apnea.
Collapse
Affiliation(s)
- K M Braegelmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - K A Streeter
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - D P Fields
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - T L Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
3
|
Edwards BA, Sands SA, Owens RL, White DP, Genta PR, Butler JP, Malhotra A, Wellman A. Effects of hyperoxia and hypoxia on the physiological traits responsible for obstructive sleep apnoea. J Physiol 2014; 592:4523-35. [PMID: 25085887 DOI: 10.1113/jphysiol.2014.277210] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Oxygen therapy is known to reduce loop gain (LG) in patients with obstructive sleep apnoea (OSA), yet its effects on the other traits responsible for OSA remain unknown. Therefore, we assessed how hyperoxia and hypoxia alter four physiological traits in OSA patients. Eleven OSA subjects underwent a night of polysomnography during which the physiological traits were measured using multiple 3-min 'drops' from therapeutic continuous positive airway pressure (CPAP) levels. LG was defined as the ratio of the ventilatory overshoot to the preceding reduction in ventilation. Pharyngeal collapsibility was quantified as the ventilation at CPAP of 0 cmH2O. Upper airway responsiveness was defined as the ratio of the increase in ventilation to the increase in ventilatory drive across the drop. Arousal threshold was estimated as the level of ventilatory drive associated with arousal. On separate nights, subjects were submitted to hyperoxia (n = 9; FiO2 ∼0.5) or hypoxia (n = 10; FiO2 ∼0.15) and the four traits were reassessed. Hyperoxia lowered LG from a median of 3.4 [interquartile range (IQR): 2.6-4.1] to 2.1 (IQR: 1.3-2.5) (P < 0.01), but did not alter the remaining traits. By contrast, hypoxia increased LG [median: 3.3 (IQR: 2.3-4.0) vs. 6.4 (IQR: 4.5-9.7); P < 0.005]. Hypoxia additionally increased the arousal threshold (mean ± s.d. 10.9 ± 2.1 l min(-1) vs. 13.3 ± 4.3 l min(-1); P < 0.05) and improved pharyngeal collapsibility (mean ± s.d. 3.4 ± 1.4 l min(-1) vs. 4.9 ± 1.3 l min(-1); P < 0.05), but did not alter upper airway responsiveness (P = 0.7). This study demonstrates that the beneficial effect of hyperoxia on the severity of OSA is primarily based on its ability to reduce LG. The effects of hypoxia described above may explain the disappearance of OSA and the emergence of central sleep apnoea in conditions such as high altitude.
Collapse
Affiliation(s)
- Bradley A Edwards
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert L Owens
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David P White
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro R Genta
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Butler
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Atul Malhotra
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA, USA
| | - Andrew Wellman
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Edge D, McDonald FB, Jones JFX, Bradford A, O'Halloran KD. Effect of chronic intermittent hypoxia on the reflex recruitment of the genioglossus during airway obstruction in the anesthetized rat. PROGRESS IN BRAIN RESEARCH 2014; 209:147-68. [PMID: 24746047 DOI: 10.1016/b978-0-444-63274-6.00008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We sought to test the hypothesis that chronic intermittent hypoxia (CIH)-a feature of sleep-disordered breathing in humans-impairs reflex recruitment of the genioglossus (GG, pharyngeal dilator) during obstructive airway events. Adult male Wistar rats were exposed to 20 cycles of normoxia and hypoxia (5% O2 at nadir) per hour, 8h a day for 7 days (CIH, N=7). The sham group (N=7) were exposed to normoxia in parallel. Following gas treatments, rats were anesthetized with an i.p. injection of urethane (1.5g/kg; 20%, w/v). Fine concentric needle electrodes were inserted into the GG and the costal diaphragm. Discriminated GG motor unit potentials and whole electromyograph (EMG), together with arterial blood pressure and arterial O2 saturation, were recorded during quiet basal breathing and during nasal airway occlusion. Airway occlusion significantly increased GG EMG activity in all animals; but there was no difference in the reflex response to airway occlusion between sham and CIH-treated animals (+105±22% vs. +105±17%, mean±SEM for area under the curve of integrated GG EMG, % increase from baseline, p=0.99). Occluded breaths were characterized by a significant increase in the firing frequency of phasically active units and the recruitment of large motor units that were quiescent under basal conditions. Though there are reports of impaired control of the upper airway following CIH in the rat, we conclude that reflexly evoked motor discharge to the GG is not affected by 7 days of CIH, a paradigm that we have shown increases apnea index in sleeping rats.
Collapse
Affiliation(s)
- Deirdre Edge
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | - Fiona B McDonald
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - James F X Jones
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Aidan Bradford
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ken D O'Halloran
- Department of Physiology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Terson de Paleville DGL, McKay WB, Folz RJ, Ovechkin AV. Respiratory motor control disrupted by spinal cord injury: mechanisms, evaluation, and restoration. Transl Stroke Res 2013; 2:463-73. [PMID: 22408690 DOI: 10.1007/s12975-011-0114-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pulmonary complications associated with persistent respiratory muscle weakness, paralysis, and spasticity are among the most important problems faced by patients with spinal cord injury when lack of muscle strength and disorganization of reciprocal respiratory muscle control lead to breathing insufficiency. This review describes the mechanisms of the respiratory motor control and its change in individuals with spinal cord injury, methods by which respiratory function is measured, and rehabilitative treatment used to restore respiratory function in those who have experienced such injury.
Collapse
Affiliation(s)
- Daniela G L Terson de Paleville
- Exercise Physiology, University of Louisville, Louisville, KY, USA. Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | | | | | | |
Collapse
|
6
|
Bautista TG, Xing T, Fong AY, Pilowsky PM. Recurrent laryngeal nerve activity exhibits a 5-HT-mediated long-term facilitation and enhanced response to hypoxia following acute intermittent hypoxia in rat. J Appl Physiol (1985) 2012; 112:1144-56. [DOI: 10.1152/japplphysiol.01356.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A progressive and sustained increase in inspiratory-related motor output (“long-term facilitation”) and an augmented ventilatory response to hypoxia occur following acute intermittent hypoxia (AIH). To date, acute plasticity in respiratory motor outputs active in the postinspiratory and expiratory phases has not been studied. The recurrent laryngeal nerve (RLN) innervates laryngeal abductor muscles that widen the glottic aperture during inspiration. Other efferent fibers in the RLN innervate adductor muscles that partially narrow the glottic aperture during postinspiration. The aim of this study was to investigate whether or not AIH elicits a serotonin-mediated long-term facilitation of laryngeal abductor muscles, and if recruitment of adductor muscle activity occurs following AIH. Urethane anesthetized, paralyzed, unilaterally vagotomized, and artificially ventilated adult male Sprague-Dawley rats were subjected to 10 exposures of hypoxia (10% O2 in N2, 45 s, separated by 5 min, n = 7). At 60 min post-AIH, phrenic nerve activity and inspiratory RLN activity were elevated (39 ± 11 and 23 ± 6% above baseline, respectively). These responses were abolished by pretreatment with the serotonin-receptor antagonist, methysergide ( n = 4). No increase occurred in time control animals ( n = 7). Animals that did not exhibit postinspiratory RLN activity at baseline did not show recruitment of this activity post-AIH ( n = 6). A repeat hypoxia 60 min after AIH produced a significantly greater peak response in both phrenic and RLN activity, accompanied by a prolonged recovery time that was also prevented by pretreatment with methysergide. We conclude that AIH induces neural plasticity in laryngeal motoneurons, via serotonin-mediated mechanisms similar to that observed in phrenic motoneurons: the so-called “Q-pathway”. We also provide evidence that the augmented responsiveness to repeat hypoxia following AIH also involves a serotonergic mechanism.
Collapse
Affiliation(s)
- Tara G. Bautista
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Tao Xing
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Angelina Y. Fong
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Paul M. Pilowsky
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Mateika JH, Sandhu KS. Experimental protocols and preparations to study respiratory long term facilitation. Respir Physiol Neurobiol 2011; 176:1-11. [PMID: 21292044 PMCID: PMC3055930 DOI: 10.1016/j.resp.2011.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/29/2022]
Abstract
Respiratory long-term facilitation is a form of neuronal plasticity that is induced following exposure to intermittent hypoxia. Long-term facilitation is characterized by a progressive increase in respiratory motor output during normoxic periods that separate hypoxic episodes and by a sustained elevation in respiratory activity for up to 90min after exposure to intermittent hypoxia. This phenomenon is associated with increases in phrenic, hypoglossal or carotid sinus nerve inspiratory-modulated discharge. The examination of long-term facilitation has been steadily ongoing for approximately 3 decades. During this period of time a variety of animal models (e.g. cats, rats and humans), experimental preparations and intermittent hypoxia protocols have been used to study long-term facilitation. This review is designed to summarize the strengths and weaknesses of the models, preparations and protocols that have been used to study LTF over the past 30 years. The review is divided into two primary sections. Initially, the models and protocols used to study LTF in animals other than humans will be discussed, followed by a section specifically focused on human studies. Each section will begin with a discussion of various factors that must be considered when selecting an experimental preparation and intermittent hypoxia protocol to examine LTF. Model and protocol design recommendations will follow, with the goal of presenting a prevailing model and protocol that will ultimately ensure standardized comparisons across studies.
Collapse
Affiliation(s)
- Jason H Mateika
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| | | |
Collapse
|
8
|
Nelson NR, Bird IM, Behan M. Testosterone restores respiratory long term facilitation in old male rats by an aromatase-dependent mechanism. J Physiol 2010; 589:409-21. [PMID: 21078587 DOI: 10.1113/jphysiol.2010.198200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Steroidal sex hormones play an important role in the neural control of breathing. Previous studies in our laboratory have shown that gonadectomy in young male rats (3 months) eliminates a form of respiratory plasticity induced by intermittent hypoxia, known as long term facilitation (LTF). Testosterone replenishment restores LTF in gonadectomized male rats, and this is dependent on the conversion of testosterone to oestradiol by aromatase. By middle age (12 months), male rats no longer exhibit LTF of hypoglossal motor output; phrenic LTF is significantly reduced, and this persists into old age. We tested the hypothesis that LTF can be restored in old male rats by administration of testosterone. Intact Fischer 344 rats (>20 months) were implanted with Silastic tubing containing testosterone (T), T plus an aromatase inhibitor (T+ADT), or 5α-dihydrotestosterone (DHT), a form of testosterone not converted to oestradiol. One week post-surgery, LTF of hypoglossal and phrenic motor output was measured. By comparison with control rats, hypoglossal LTF was increased in testosterone-treated rats, with levels approaching that of normal young rats. LTF was not restored in T+ADT or DHT-treated rats. Aromatase levels in hypoglossal and phrenic nuclei did not change with age. As serum testosterone levels did not decline with age, local bioavailability of testosterone in old rats may be a limiting factor in the expression of this form of respiratory plasticity. Our findings suggest that testosterone supplementation could potentially be used to enhance upper airway control in the elderly.
Collapse
Affiliation(s)
- N R Nelson
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706-1102, USA
| | | | | |
Collapse
|
9
|
Protein kinase A activators produce a short-term, but not long-term, increase in respiratory-drive transmission at the hypoglossal motor nucleus in vivo. Neurosci Lett 2010; 486:14-8. [PMID: 20851162 DOI: 10.1016/j.neulet.2010.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/20/2010] [Accepted: 09/11/2010] [Indexed: 11/24/2022]
Abstract
Synaptic plasticity is an intrinsic and conserved feature of neuronal activity that has been most extensively studied in the context of learning and memory in Aplysia and the mammalian hippocampus. However, the intracellular mechanisms underlying plasticity at motor nuclei, influencing motor behaviour, are less well studied. In vitro experiments in neonatal rodents indicate that protein kinase A (PKA) modulates respiratory-drive transmission at the hypoglossal motor nucleus (HMN), which innervates the genioglossus muscle of the tongue. We hypothesised that PKA activators at the HMN would increase genioglossus activity in vivo, whereas a PKA inhibitor would suppress activity indicative of constitutive PKA activation. Since PKA activators are importantly involved in models of long-term augmentation of neuronal activity following massed stimulation [16], we also hypothesised that application of PKA activators to the HMN would produce long-term facilitation of genioglossus activity. Experiments were performed in 25 isoflurane-anaesthetised, tracheotomised, spontaneously breathing adult rats. Microdialysis perfusion of 8-Br-cAMP (direct PKA activator) into the HMN increased genioglossus activity compared to baseline levels with artificial cerebrospinal fluid (P<0.001). Application of forskolin (indirect PKA activator) had a similar effect (P<0.002). Genioglossus activity progressively decreased back to baseline during a 90-min washout with artificial cerebrospinal fluid, demonstrating a lack of long-term facilitation of genioglossus activity. Similar to massed application of 8-Br-cAMP to the HMN, intermittent application produced a short-term (P<0.001), but not long-term, increase in genioglossus activity in vivo. Application of Rp-8-Cl-cAMPS (PKA inhibitor) did not decrease genioglossus activity, indicating a lack of constitutive PKA activation.
Collapse
|
10
|
Peever J. The ins and outs of deep breathing: mechanisms of respiratory motor plasticity. J Appl Physiol (1985) 2010; 109:265-6. [DOI: 10.1152/japplphysiol.00489.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- John Peever
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|