1
|
Xie N, Bickley BA, Gross AD. GABA-gated chloride channel mutation (Rdl) induces cholinergic physiological compensation resulting in cross resistance in Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105972. [PMID: 39084765 DOI: 10.1016/j.pestbp.2024.105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024]
Abstract
The Drosophila melanogaster MD-RR strain contains an Rdl mutation (A301S) resulting in resistance to several insecticide classes viz. phenyl pyrazoles (e.g., fipronil), cyclodienes (e.g., dieldrin), and chlorinated aliphatic hydrocarbons (e.g., lindane). Fitness costs are commonly observed with resistant insect populations as side effects of the genetic change conferring the resistant phenotype. Because of fitness costs, reversion from the resistant to susceptible genotype and phenotype is common. However, the Rdl genotype in D. melanogaster appears to allow the flies to maintain the resistant genotype/phenotype without selective pressure and with minimal fitness costs. We provide evidence that compensation for the Rdl mutation influences the cholinergic system, where an increase in acetylcholinesterase gene expression and enzyme activity results in neurophysiological changes and cross resistance to a carbamate insecticide (propoxur oral resistance ratio (RR) of 63) and an organophosphate insecticide (dichlorvos oral RR of 7). Such cross resistance was not previously reported with the initial collection and testing of this strain. In addition to acetylcholinesterase, the Rdl mutation influences the expression of the muscarinic acetylcholine receptor subtype-B, resulting in resistance to non-selective muscarinic compounds (pilocarpine and atropine). Collectively, these results indicate that the Rdl mutation (A301S) at GABA-gated ionophore complex influences the physiology of the cholinergic system, leading to resistance to established insecticide classes. Additionally, this mutation may impact the effectiveness of insecticides targeting novel sites, like muscarinic receptors.
Collapse
Affiliation(s)
- Na Xie
- Virginia Polytechnic Institute and State University, Department of Entomology, Molecular Physiology and Toxicology Laboratory Blacksburg, VA 24061, USA
| | - Brandon A Bickley
- Virginia Polytechnic Institute and State University, Department of Entomology, Molecular Physiology and Toxicology Laboratory Blacksburg, VA 24061, USA
| | - Aaron D Gross
- Virginia Polytechnic Institute and State University, Department of Entomology, Molecular Physiology and Toxicology Laboratory Blacksburg, VA 24061, USA; School of Neuroscience, Fralin Life Science Institute, Virginia Tech Center for Drug Discovery, Center for Emerging Zoonotic and Arthropod-borne Diseases, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
2
|
Hassan A, Kang L, Zhang K, Wang L, Qin X, Fang G, Lu Y, Huang Q. Effect of entomopathogenic fungi on behavior and physiology of Solenopsis invicta (Hymenoptera, Formicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:825-833. [PMID: 38634604 DOI: 10.1093/jee/toae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
In an ant colony, a large number of nestmates with a similar gene pool coexist, making them more vulnerable to pathogenic attacks. These pathogens influence the behavior and physiology of the fire ant Solenopsis invicta Buren. Here, we evaluated the impact of entomopathogenic fungi (EPF) Metarhizium anisopliae on the behavior (locomotion and foraging) and physiology (biological molecules, anti-fungal activity, and survival) of S. invicta. Distance traveled and velocity significantly decreased, while turn angle and angular velocity significantly increased in ants exposed to a higher concentration of M. anisopliae compared to ants exposed to control after 36 h, which showed disturbed locomotion. Fungus infection significantly affected the foraging behavior of ants. Fungus-exposed ants spent significantly less time in the food zone (area with food) than in the inner zone (area without food). The activities of 4 enzymes, peroxidase, glutathione-S-transferase, hydrogen peroxide (H2O2), and carboxylesterase were significantly decreased. In contrast, catalase and anti-fungal activities were increased after fungal exposure compared to the control. The activity of acetylcholinesterase, which hydrolyses the important neurotransmitter acetylcholine, also decreased after fungal application compared to the control. Survival of ants was also significantly reduced after fungus infection compared to the control. Our findings help to understand the influence of M. anisopliae on the behavior and physiology of S. invicta, which will help in the management of S. invicta using the EPF M. anisopliae.
Collapse
Affiliation(s)
- Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Lidong Kang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaixiong Zhang
- Vegetational Protection Union Station of Hubei Province, Wuhan 430070, China
| | - Lei Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xianjiao Qin
- Vegetational Protection Union Station of Hubei Province, Wuhan 430070, China
| | - Guobin Fang
- Vegetational Protection Union Station of Hubei Province, Wuhan 430070, China
| | - Yongyue Lu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Guillem-Amat A, López-Errasquín E, García-Ricote I, Barbero JL, Sánchez L, Casas-Tintó S, Ortego F. Immunodetection of Truncated Forms of the α6 Subunit of the nAChR in the Brain of Spinosad Resistant Ceratitis capitata Phenotypes. INSECTS 2023; 14:857. [PMID: 37999056 PMCID: PMC10672392 DOI: 10.3390/insects14110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
The α6 subunit of the nicotinic acetylcholine receptor (nAChR) has been proposed as the target for spinosad in insects. Point mutations that result in premature stop codons in the α6 gene of Ceratitis capitata flies have been previously associated with spinosad resistance, but it is unknown if these transcripts are translated and if so, what is the location of the putative truncated proteins. In this work, we produced a specific antibody against C. capitata α6 (Ccα6) and validated it by ELISA, Western blotting and immunofluorescence assays in brain tissues. The antibody detects both wild-type and truncated forms of Ccα6 in vivo, and the protein is located in the cell membrane of the brain of wild-type spinosad sensitive flies. On the contrary, the shortened transcripts present in resistant flies generate putative truncated proteins that, for the most part, fail to reach their final destination in the membrane of the cells and remain in the cytoplasm. The differences observed in the locations of wild-type and truncated α6 proteins are proposed to determine the susceptibility or resistance to spinosad.
Collapse
Affiliation(s)
- Ana Guillem-Amat
- Centro de Investigaciones Biológicas Margaritas Salas, CSIC, 28040 Madrid, Spain (F.O.)
| | - Elena López-Errasquín
- Centro de Investigaciones Biológicas Margaritas Salas, CSIC, 28040 Madrid, Spain (F.O.)
| | | | - José Luis Barbero
- Centro de Investigaciones Biológicas Margaritas Salas, CSIC, 28040 Madrid, Spain (F.O.)
| | - Lucas Sánchez
- Centro de Investigaciones Biológicas Margaritas Salas, CSIC, 28040 Madrid, Spain (F.O.)
| | | | - Félix Ortego
- Centro de Investigaciones Biológicas Margaritas Salas, CSIC, 28040 Madrid, Spain (F.O.)
| |
Collapse
|
4
|
Kim S, Seong KM, Lee SH. Acetylcholine titre regulation by non-neuronal acetylcholinesterase 1 and its putative roles in honey bee physiology. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37130064 DOI: 10.1111/imb.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Similar to other insects, honey bees have two acetylcholinesterases (AChEs), AmAChE1 and AmAChE2. The primary catalytic enzyme for acetylcholine (ACh) hydrolysis in synapses is AmAChE2, which is predominantly expressed in neuronal tissues, whereas AmAChE1 is expressed in both neuronal and non-neuronal tissues, with limited catalytic activity. Unlike constitutively expressed AmAChE2, AmAChE1 expression is induced under stressful conditions such as heat shock and brood rearing suppression, but its role in regulating ACh titre remains unclear. In this paper, to elucidate the role of AmAChE1, the expression of AmAChE1 was suppressed via RNA interference (RNAi) in AmAChE1-induced worker bees. The ACh titre measurement following RNAi revealed that the expression of AmAChE1 downregulated the overall ACh titre in all tissues examined without altering AmAChE2 expression. Transcriptome analysis showed that AmAChE1 knockdown upregulated protein biosynthesis, cell respiration, and thermogenesis in the head. These findings suggest that AmAChE1 is involved in decreasing neuronal activity, enhancing energy conservation, and potentially extending longevity under stressful conditions via ACh titre regulation.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Keon Mook Seong
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
A deep ensemble learning method for colorectal polyp classification with optimized network parameters. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractColorectal Cancer (CRC), a leading cause of cancer-related deaths, can be abated by timely polypectomy. Computer-aided classification of polyps helps endoscopists to resect timely without submitting the sample for histology. Deep learning-based algorithms are promoted for computer-aided colorectal polyp classification. However, the existing methods do not accommodate any information on hyperparametric settings essential for model optimisation. Furthermore, unlike the polyp types, i.e., hyperplastic and adenomatous, the third type, serrated adenoma, is difficult to classify due to its hybrid nature. Moreover, automated assessment of polyps is a challenging task due to the similarities in their patterns; therefore, the strength of individual weak learners is combined to form a weighted ensemble model for an accurate classification model by establishing the optimised hyperparameters. In contrast to existing studies on binary classification, multiclass classification require evaluation through advanced measures. This study compared six existing Convolutional Neural Networks in addition to transfer learning and opted for optimum performing architecture only for ensemble models. The performance evaluation on UCI and PICCOLO dataset of the proposed method in terms of accuracy (96.3%, 81.2%), precision (95.5%, 82.4%), recall (97.2%, 81.1%), F1-score (96.3%, 81.3%) and model reliability using Cohen’s Kappa Coefficient (0.94, 0.62) shows the superiority over existing models. The outcomes of experiments by other studies on the same dataset yielded 82.5% accuracy with 72.7% recall by SVM and 85.9% accuracy with 87.6% recall by other deep learning methods. The proposed method demonstrates that a weighted ensemble of optimised networks along with data augmentation significantly boosts the performance of deep learning-based CAD.
Collapse
|
6
|
The Enzymatic Core of Scorpion Venoms. Toxins (Basel) 2022; 14:toxins14040248. [PMID: 35448857 PMCID: PMC9030722 DOI: 10.3390/toxins14040248] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022] Open
Abstract
Enzymes are an integral part of animal venoms. Unlike snakes, in which enzymes play a primary role in envenomation, in scorpions, their function appears to be ancillary in most species. Due to this, studies on the diversity of scorpion venom components have focused primarily on the peptides responsible for envenomation (toxins) and a few others (e.g., antimicrobials), while enzymes have been overlooked. In this work, a comprehensive study on enzyme diversity in scorpion venoms was performed by transcriptomic and proteomic techniques. Enzymes of 63 different EC types were found, belonging to 330 orthogroups. Of them, 24 ECs conform the scorpion venom enzymatic core, since they were determined to be present in all the studied scorpion species. Transferases and lyases are reported for the first time. Novel enzymes, which can play different roles in the venom, including direct toxicity, as venom spreading factors, activators of venom components, venom preservatives, or in prey pre-digestion, were described and annotated. The expression profile for transcripts coding for venom enzymes was analyzed, and shown to be similar among the studied species, while being significantly different from their expression pattern outside the telson.
Collapse
|
7
|
Rix RR, Cutler GC. Neonicotinoid Exposures that Stimulate Predatory Stink Bug, Podisus maculiventris (Hemiptera: Pentatomidae), Reproduction Do Not Inhibit Its Behavior. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1575-1581. [PMID: 33974694 DOI: 10.1093/jee/toab085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Exposure to sublethal amounts of pesticide can compromise life-history traits and behavior of natural enemies thereby reducing their effectiveness as predators. However, sublethal exposures to pesticides and other stressors may also stimulate insects, a dose-response phenomenon known as hormesis. We previously reported stimulatory effects on reproduction in the beneficial insect predator Podisus maculiventris (Say) (Hemiptera: Pentatomidae) following exposure to sublethal concentrations of imidacloprid. Here we examined whether these same treatments stimulated behavior and/or predation of P. maculiventris. Stimulation of some behaviors occurred at a reproductively hormetic concentration and two additional sublethal concentrations, depending upon bioassay design and sex. We observed no substantial inhibition of behavior or predation at a reproductively hormetic concentration, demonstrating that reproductive fitness in P. maculiventris may be stimulated without compromising behaviors important in its effectiveness as a natural enemy.
Collapse
Affiliation(s)
- R R Rix
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | | |
Collapse
|
8
|
Tuncsoy B, Mese Y. Influence of titanium dioxide nanoparticles on bioaccumulation, antioxidant defense and immune system of Galleria mellonella L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38007-38015. [PMID: 33725309 DOI: 10.1007/s11356-021-13409-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Nanomaterials of different sizes and diameters are frequently used in various industrial areas, due to the rapid development of nanotechnology. Hence, it leads to toxic effects on the environment and non-target organisms, and adverse effects such as oxidative stress and membrane damage in cells and tissues are occurred. Some biomarkers such as the accumulation of intermediate products, detoxification of the immune system, or xenobiotic are used in the detection of toxic effects of exogenous substances in living organisms. In this study, the effects on catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-s-transferase (GST) enzyme activities to determine the toxic effects of TiO2 NPs on antioxidant defense system, acetylcholinesterase (AChE) activity to determine their neurotoxic effects, and total hemocyte count (THC) to determine their effect on the immune system were investigated in model organism Galleria mellonella larvae. It was determined that major amounts of Ti were mostly eliminated through the Malpighian tubules. Moreover, TiO2 NPs in different concentrations caused the formation of reactive oxygen species in G. mellonella and lead to an increase in antioxidant enzymes. Decreases were found in THC due to the TiO2 NP application. As a result, it was concluded that TiO2 NPs caused accumulation in tissues of the model organism G. mellonella, resulting in oxidative stress and has adverse effects on the immune system.
Collapse
Affiliation(s)
- Benay Tuncsoy
- Faculty of Engineering, Bioengineering Department, Adana Alparslan Turkes Science and Technology University, Adana, Turkey.
| | - Yagmur Mese
- Faculty of Science and Letters, Biology Department, Cukurova University, Adana, Turkey
| |
Collapse
|
9
|
Camp AA, Lehmann DM. Impacts of Neonicotinoids on the Bumble Bees Bombus terrestris and Bombus impatiens Examined through the Lens of an Adverse Outcome Pathway Framework. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:309-322. [PMID: 33226673 PMCID: PMC8577289 DOI: 10.1002/etc.4939] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 05/26/2023]
Abstract
Bumble bees (Bombus sp.) are important pollinators for agricultural systems and natural landscapes and have faced population declines globally in recent decades. Neonicotinoid pesticides have been implicated as one of the reasons for the population reductions in bumble bees and other pollinators due to their widespread use, specificity to the invertebrate nervous system, and toxicity to bees. Adverse outcome pathways (AOPs) are used to describe the mechanism of action of a toxicant through sequential levels of biological organization to understand the key events that occur for a given adverse outcome. We used the AOP framework to organize and present the current literature available on the impacts of neonicotinoids on bumble bees. The present review focuses on Bombus terrestris and B. impatiens, the 2 most commonly studied bumble bees due to their commercial availability. Our review does not seek to describe an AOP for the molecular initiating event shared by neonicotinoids, but rather aims to summarize the current literature and determine data gaps for the Bombus research community to address. Overall, we highlight a great need for additional studies, especially those examining cellular and organ responses in bumble bees exposed to neonicotinoids. Environ Toxicol Chem 2021;40:309-322. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- A. A. Camp
- ORISE Researcher, Oak Ridge Associated Universities, Research Triangle Park, NC 27711, USA
| | - D. M. Lehmann
- Center for Public Health and Environmental Assessment (CPHEA), Public Health & Environmental Systems Division, Exposure Indicators Branch, US - Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
10
|
Krzyżowski M, Baran B, Łozowski B, Francikowski J. The Effect of Rosmarinus officinalis Essential Oil Fumigation on Biochemical, Behavioral, and Physiological Parameters of Callosobruchus maculatus. INSECTS 2020; 11:E344. [PMID: 32503195 PMCID: PMC7349277 DOI: 10.3390/insects11060344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/03/2023]
Abstract
This study explores the influence of rosemary, Rosmarinus officinalis (L.) essential oil (EO) on the biochemical (acetylcholinesterase, catalase, and glutathione S-transferase), physiological (oxygen consumption), and behavioral (open field test, repellency) parameters of an important stored product insect: cowpea weevil, Callosobruchus maculatus (F.). R. officinalis EO exhibited effective insecticidal action against C. maculatus even at relatively low concentrations. LC50 = 15.69 μL/L air, and was highly repellent at concentrations equal to or above LC25. Statistically significant inhibition in locomotor activity occurred only after the acute exposure to the EO at LC12.5 and LC25. The oxygen consumption test showed metabolism increase only at LC50. An increase in activity was observed in the case of all three enzymes examined. The presented data provides a potentially valuable resource in designing more environmentally friendly and safer insecticide agents.
Collapse
Affiliation(s)
- Michał Krzyżowski
- Laboratory of Insect Physiology and Ethology, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.B.); (B.Ł.); (J.F.)
| | | | | | | |
Collapse
|
11
|
Kola VSR, Renuka P, Madhav MS, Mangrauthia SK. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front Physiol 2015; 6:119. [PMID: 25954206 PMCID: PMC4406143 DOI: 10.3389/fphys.2015.00119] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21-24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed.
Collapse
Affiliation(s)
| | | | - Maganti Sheshu Madhav
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Satendra K. Mangrauthia
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| |
Collapse
|
12
|
Milivojević T, Glavan G, Božič J, Sepčić K, Mesarič T, Drobne D. Neurotoxic potential of ingested ZnO nanomaterials on bees. CHEMOSPHERE 2015; 120:547-554. [PMID: 25305659 DOI: 10.1016/j.chemosphere.2014.07.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 06/04/2023]
Abstract
The honey bee is among most important pollinators threatened by environmental pollution, pest control and potentially, by products of nanotechnologies. The aim of the current study was an analysis of the neurotoxic potential of ingested zinc oxide nanomaterials (ZnO NMs) or zinc ions (Zn(2+)) on honey bees. We analysed a variety of biomarkers, including metabolic impairment, feeding rate, and survival, as well as the activities of a stress-related enzyme glutathione S-transferase, and the neurotoxicity biomarker acetylcholinesterase. Acetylcholinesterase activity was found to be elevated in bees exposed to either of the tested substances. In addition, we observed increased feeding rate in the group treated with Zn(2+) but not with ZnO NMs or control group. The observed effects we relate primarily to Zn(2+) ions. Here we provide evidence that zinc ions either originating from Zn salt or Zn-based NPs have a neurotoxic potential and thus might contribute to colony survival.
Collapse
Affiliation(s)
- Tamara Milivojević
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana SI-1000, Slovenia
| | - Gordana Glavan
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana SI-1000, Slovenia
| | - Janko Božič
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana SI-1000, Slovenia
| | - Kristina Sepčić
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana SI-1000, Slovenia
| | - Tina Mesarič
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana SI-1000, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana SI-1000, Slovenia; Centre of Excellence in Advanced Materials and Technologies for the Future (CO NAMASTE), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence in Nanoscience and Nanotechnology (CO Nanocenter), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|