1
|
Mohan S, Mayers M, Weaver M, Baudet H, De Biase I, Goldstein J, Mao R, McGlaughon J, Moser A, Pujol A, Suchy S, Yuzyuk T, Braverman NE. Evaluating the strength of evidence for genes implicated in peroxisomal disorders using the ClinGen clinical validity framework and providing updates to the peroxisomal disease nomenclature. Mol Genet Metab 2023; 139:107604. [PMID: 37236006 PMCID: PMC10484331 DOI: 10.1016/j.ymgme.2023.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Peroxisomal disorders are heterogeneous in nature, with phenotypic overlap that is indistinguishable without molecular testing. Newborn screening and gene sequencing for a panel of genes implicated in peroxisomal diseases are critical tools for the early and accurate detection of these disorders. It is therefore essential to evaluate the clinical validity of the genes included in sequencing panels for peroxisomal disorders. The Peroxisomal Gene Curation Expert Panel (GCEP) assessed genes frequently included on clinical peroxisomal testing panels using the Clinical Genome Resource (ClinGen) gene-disease validity curation framework and classified gene-disease relationships as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. Subsequent to gene curation, the GCEP made recommendations to update the disease nomenclature and ontology in the Monarch Disease Ontology (Mondo) database. Thirty-six genes were assessed for the strength of evidence supporting their role in peroxisomal disease, leading to 36 gene-disease relationships, after two genes were removed for their lack of a role in peroxisomal disease and two genes were curated for two different disease entities each. Of these, 23 were classified as Definitive (64%), one as Strong (3%), eight as Moderate (23%), two as Limited (5%), and two as No known disease relationship (5%). No contradictory evidence was found to classify any relationships as Disputed or Refuted. The gene-disease relationship curations are publicly available on the ClinGen website (https://clinicalgenome.org/affiliation/40049/). The changes to peroxisomal disease nomenclature are displayed on the Mondo website (http://purl.obolibrary.org/obo/MONDO_0019053). The Peroxisomal GCEP-curated gene-disease relationships will inform clinical and laboratory diagnostics and enhance molecular testing and reporting. As new data will emerge, the gene-disease classifications asserted by the Peroxisomal GCEP will be re-evaluated periodically.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Megan Mayers
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Meredith Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Heather Baudet
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | | | - Jennifer Goldstein
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Rong Mao
- ARUP Laboratories, Salt Lake City, UT, USA
| | | | - Ann Moser
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aurora Pujol
- Bellvitge Biomedical Research Institute (IDIBELL Instituto de Investigación Biomédica de Bellvitge), Barcelona, Spain
| | | | | | - Nancy E Braverman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim Biophys Acta Rev Cancer 2018; 1870:103-121. [PMID: 30012421 DOI: 10.1016/j.bbcan.2018.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.
Collapse
|