1
|
Officer K, Pruvot M, Horwood P, Denk D, Warren K, Hul V, Thy N, Broadis N, Dussart P, Jackson B. Epidemiology and pathological progression of erythematous lip lesions in captive sun bears (Helarctos malayanus). PLoS One 2020; 15:e0243180. [PMID: 33259561 PMCID: PMC7707555 DOI: 10.1371/journal.pone.0243180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/16/2020] [Indexed: 01/15/2023] Open
Abstract
This study investigates the occurrence of erythematous lip lesions in a captive sun bear population in Cambodia, including the progression of cheilitis to squamous cell carcinoma, and the presence of Ursid gammaherpesvirus 1. Visual assessment conducted in 2015 and 2016 recorded the prevalence and severity of lesions. Opportunistic sampling for disease testing was conducted on a subset of 39 sun bears, with histopathological examination of lip and tongue biopsies and PCR testing of oral swabs and tissue biopsies collected during health examinations. Lip lesions were similarly prevalent in 2015 (66.0%) and 2016 (68.3%). Degradation of lip lesion severity was seen between 2015 and 2016, and the odds of having lip lesions, having more severe lip lesions, and having lip lesion degradation over time, all increased with age. Cheilitis was found in all lip lesion biopsies, with histological confirmation of squamous cell carcinoma in 64.5% of cases. Single biopsies frequently showed progression from dysplasia to neoplasia. Eighteen of 31 sun bears (58.1%) had at least one sample positive for Ursid gammaherpesvirus 1. The virus was detected in sun bears with and without lip lesions, however due to case selection being strongly biased towards those showing lip lesions it was not possible to test for association between Ursid gammaherpesvirus 1 and lip squamous cell carcinoma. Given gammaherpesviruses can play a role in cancer development under certain conditions in other species, we believe further investigation into Ursid gammaherpesvirus 1 as one of a number of possible co-factors in the progression of lip lesions to squamous cell carcinoma is warranted. This study highlights the progressively neoplastic nature of this lip lesion syndrome in sun bears which has consequences for captive and re-release management. Similarly, the detection of Ursid gammaherpesvirus 1 should be considered in pre-release risk analyses, at least until data is available on the prevalence of the virus in wild sun bears.
Collapse
Affiliation(s)
- Kirsty Officer
- Free the Bears, Phnom Penh, Cambodia
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
- * E-mail:
| | - Mathieu Pruvot
- Health Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Paul Horwood
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Daniela Denk
- International Zoo Veterinary Group, Keighley, United Kingdom
| | - Kris Warren
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Nhim Thy
- Forestry Administration, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | | | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Bethany Jackson
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Ruggiero E, Richter SN. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res 2018; 46:3270-3283. [PMID: 29554280 PMCID: PMC5909458 DOI: 10.1093/nar/gky187] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that form within guanine-rich strands of regulatory genomic regions. G4s have been extensively described in the human genome, especially in telomeres and oncogene promoters; in recent years the presence of G4s in viruses has attracted increasing interest. Indeed, G4s have been reported in several viruses, including those involved in recent epidemics, such as the Zika and Ebola viruses. Viral G4s are usually located in regulatory regions of the genome and implicated in the control of key viral processes; in some cases, they have been involved also in viral latency. In this context, G4 ligands have been developed and tested both as tools to study the complexity of G4-mediated mechanisms in the viral life cycle, and as therapeutic agents. In general, G4 ligands showed promising antiviral activity, with G4-mediated mechanisms of action both at the genome and transcript level. This review aims to provide an updated close-up of the literature on G4s in viruses. The current state of the art of G4 ligands in antiviral research is also reported, with particular focus on the structural and physicochemical requirements for optimal biological activity. The achievements and the to-dos in the field are discussed.
Collapse
Affiliation(s)
- Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| |
Collapse
|
3
|
Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, Balasubramanian S, Khanna R, Tellam J. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol 2014; 10:358-64. [PMID: 24633353 PMCID: PMC4188979 DOI: 10.1038/nchembio.1479] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/14/2014] [Indexed: 01/29/2023]
Abstract
Viruses that establish latent infections have evolved unique mechanisms to avoid host immune recognition. Maintenance proteins of these viruses regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The mechanisms governing this finely tuned regulation of viral latency are unknown. Here we show that mRNAs encoding gammaherpesviral maintenance proteins contain within their open reading frames clusters of unusual structural elements, G-quadruplexes, which are responsible for the cis-acting regulation of viral mRNA translation. By studying the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1) mRNA, we demonstrate that destabilization of G-quadruplexes using antisense oligonucleotides increases EBNA1 mRNA translation. In contrast, pretreatment with a G-quadruplex-stabilizing small molecule, pyridostatin, decreases EBNA1 synthesis, highlighting the importance of G-quadruplexes within virally encoded transcripts as unique regulatory signals for translational control and immune evasion. Furthermore, these findings suggest alternative therapeutic strategies focused on targeting RNA structure within viral ORFs.
Collapse
Affiliation(s)
- Pierre Murat
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jie Zhong
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lea Lekieffre
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nathan P Cowieson
- Centre for Synchrotron Science, Monash University, Melbourne, Victoria, Australia
| | - Jennifer L Clancy
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Thomas Preiss
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cambridge Institute, Cancer Research UK, Li Ka Shing Center, Cambridge, UK
- School of Clinical Medicine, The University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - Rajiv Khanna
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Judy Tellam
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|