1
|
Romano EJ, Zhang DQ. Dopaminergic amacrine cells express HCN channels in the developing and adult mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604440. [PMID: 39091772 PMCID: PMC11291019 DOI: 10.1101/2024.07.20.604440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Purpose To determine the molecular and functional expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in developing and mature dopaminergic amacrine cells (DACs), the sole source of ocular dopamine that plays a vital role in visual function and eye development. Methods HCN channels are encoded by isoforms 1-4. HCN1, HCN2, and HCN4 were immunostained in retinal slices obtained from mice at postnatal day 4 (P4), P8, and P12 as well as in adults. Each HCN channel isoform was also immunostained with tyrosine hydroxylase, a marker for DACs, at P12 and adult retinas. Genetically-marked DACs were recorded in flat-mount retina preparation using a whole-cell current-clamp technique. Results HCN1 was expressed in rods/cones, amacrine cells, and retinal ganglion cells (RGCs) at P4, along with bipolar cells by P12. Different from HCN1, HCN2 and HCN4 were each expressed in amacrine cells and RGCs at P4, along with bipolar cells by P8, and in rods/cones by P12. Double immunostaining shows that each of the three isoforms was expressed in approximately half of DACs at P12 but in almost all DACs in adults. Electrophysiology results demonstrate that HCN channel isoforms form functional HCN channels, and the pharmacological blockade of HCN channels reduced the spontaneous firing frequency in most DACs. Conclusions Each class of retinal neurons may use different isoforms of HCN channels to function during development. HCN1, HCN2, and HCN4 form functional HCN channels in DACs, which appears to modulate their spontaneous firing activity.
Collapse
Affiliation(s)
- Emilio J Romano
- Eye Research Institute, Oakland University, Rochester, Michigan
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, Michigan
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| |
Collapse
|
2
|
Umeya N, Yoshizawa Y, Fukuda K, Ikeda K, Kamada M, Inada H, Usui T, Miyawaki I. Detection of retinal dysfunction induced by HCN channel inhibitors using multistep light stimulus and long-duration light stimulus ERG in rats. Exp Eye Res 2024; 241:109847. [PMID: 38401854 DOI: 10.1016/j.exer.2024.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Ivabradine, a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel inhibitor, has been reported to induce photosensitivity-related visual disturbances such as phosphene in humans. Ivabradine-induced visual disturbances are caused by inhibition of HCN channels in the retina, and the mechanisms have been verified using HCN channel knockout mice and electroretinography (ERG). However, in rats, classical ERG using single flash light stimulus with standard analyses of waveform amplitude and latency has not revealed abnormal retinal function after administration of ivabradine. To verify whether retinal dysfunction after ivabradine administration was detectable in rats, we performed ERG using multistep flash light stimulation at the time when plasma concentration of ivabradine was high. Furthermore, the mechanism of the change in the waveform that appeared after the b-wave was investigated. Ivabradine and cilobradine, a selective HCN channel inhibitor, were administered subcutaneously to rats at 4-40 mg/kg as a single dose, and flash or long-duration ERG recordings at each light stimulus luminance were conducted 1.5 h after administration. Plasma and retinal concentrations of both compounds were measured immediately after the ERG recordings. In the flash ERG, prolongation of a- and/or b-wave latencies were detected at each light stimulus, and dose-dependent waveform changes after the b-wave were recorded at the specific light stimulus luminance for both compounds. These ERG changes increased in response to increasing plasma and retinal concentrations for both ivabradine and cilobradine. In the long-duration light stimulus ERG, a change in the waveform of the b-wave trough and attenuation of the c-wave were recorded, suggesting that the feedback control in the photoreceptor cells may be inhibited. This study revealed that the retinal dysfunction by HCN channel inhibitors in rats can be detected by multistep light stimulus ERG. Additionally, we identified that the inhibition of feedback current and the sustained responses in the photoreceptor cells cause the retinal dysfunction of HCN channel inhibitors in rats.
Collapse
Affiliation(s)
- Naohisa Umeya
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan.
| | - Yuki Yoshizawa
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Kosuke Fukuda
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Keigo Ikeda
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Mami Kamada
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hiroshi Inada
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Toru Usui
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| |
Collapse
|
3
|
Zhao D, Pinares-Garcia P, McKenzie CE, Bleakley LE, Forster IC, Wong VHY, Nguyen CTO, Scheffer IE, Reid CA, Bui BV. Retinal Dysfunction in a Mouse Model of HCN1 Genetic Epilepsy. J Neurosci 2023; 43:2199-2209. [PMID: 36813574 PMCID: PMC10039744 DOI: 10.1523/jneurosci.1615-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 02/24/2023] Open
Abstract
Pathogenic variants in HCN1 are associated with a range of epilepsy syndromes including a developmental and epileptic encephalopathy. The recurrent de novo HCN1 pathogenic variant (M305L) results in a cation leak, allowing the flux of excitatory ions at potentials where the wild-type channels are closed. The Hcn1M294L mouse recapitulates patient seizure and behavioral phenotypes. As HCN1 channels are highly expressed in rod and cone photoreceptor inner segments, where they shape the light response, mutated channels are likely to impact visual function. Electroretinogram (ERG) recordings from male and female mice Hcn1M294L mice revealed a significant decrease in the photoreceptor sensitivity to light, as well as attenuated bipolar cell (P2) and retinal ganglion cell responses. Hcn1M294L mice also showed attenuated ERG responses to flickering lights. ERG abnormalities are consistent with the response recorded from a single female human subject. There was no impact of the variant on the structure or expression of the Hcn1 protein in the retina. In silico modeling of photoreceptors revealed that the mutated HCN1 channel dramatically reduced light-induced hyperpolarization, resulting in more Ca2+ flux during the response when compared with the wild-type situation. We propose that the light-induced change in glutamate release from photoreceptors during a stimulus will be diminished, significantly blunting the dynamic range of this response. Our data highlight the importance of HCN1 channels to retinal function and suggest that patients with HCN1 pathogenic variants are likely to have a dramatically reduced sensitivity to light and a limited ability to process temporal information.SIGNIFICANCE STATEMENT Pathogenic variants in HCN1 are emerging as an important cause of catastrophic epilepsy. HCN1 channels are ubiquitously expressed throughout the body, including the retina. Electroretinogram recordings from a mouse model of HCN1 genetic epilepsy showed a marked decrease in the photoreceptor sensitivity to light and a reduced ability to respond to high rates of light flicker. No morphologic deficits were noted. Simulation data suggest that the mutated HCN1 channel blunts light-induced hyperpolarization and consequently limits the dynamic range of this response. Our results provide insights into the role HCN1 channels play in retinal function as well as highlighting the need to consider retinal dysfunction in disease caused by HCN1 variants. The characteristic changes in the electroretinogram open the possibility of using this tool as a biomarker for this HCN1 epilepsy variant and to facilitate development of treatments.
Collapse
Affiliation(s)
- Da Zhao
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Paulo Pinares-Garcia
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville 3010, Victoria, Australia
| | - Chaseley E McKenzie
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville 3010, Victoria, Australia
| | - Lauren E Bleakley
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville 3010, Victoria, Australia
| | - Ian C Forster
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville 3010, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ingrid E Scheffer
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville 3010, Victoria, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne/Austin Health, Heidelberg 3084, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville 3052, VIC Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville 3052, Victoria Australia
| | - Christopher A Reid
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville 3010, Victoria, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne/Austin Health, Heidelberg 3084, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
4
|
Mckenzie CE, Ho CJ, Forster IC, Soh MS, Phillips AM, Chang YC, Scheffer IE, Reid CA, Tsai MH. Impaired Color Recognition in HCN1 Epilepsy: A Single Case Report. Front Neurol 2022; 13:834252. [PMID: 35359652 PMCID: PMC8960314 DOI: 10.3389/fneur.2022.834252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Variants in HCN1 are associated with a range of epilepsy syndromes including developmental and epileptic encephalopathies. Here we describe a child harboring a novel de novo HCN1 variant, E246A, in a child with epilepsy and mild developmental delay. By parental report, the child had difficulty in discriminating between colors implicating a visual deficit. This interesting observation may relate to the high expression of HCN1 channels in rod and cone photoreceptors where they play an integral role in shaping the light response. Functional analysis of the HCN1 E246A variant revealed a right shift in the voltage dependence of activation and slowing of the rates of activation and deactivation. The changes in the biophysical properties are consistent with a gain-of-function supporting the role of HCN1 E246A in disease causation. This case suggests that visual function, including color discrimination, should be carefully monitored in patients with diseases due to HCN1 pathogenic variants.
Collapse
Affiliation(s)
- Chaseley E. Mckenzie
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Chen-Jui Ho
- Division of Epilepsy, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ian C. Forster
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ming S. Soh
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - A. Marie Phillips
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ingrid E. Scheffer
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
- Department of Paediatrics, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Christopher A. Reid
- Early Development Division, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Meng-Han Tsai
- Division of Epilepsy, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Schön C, Asteriti S, Koch S, Sothilingam V, Garrido MG, Tanimoto N, Herms J, Seeliger MW, Cangiano L, Biel M, Michalakis S. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia. Hum Mol Genet 2016; 25:1165-75. [DOI: 10.1093/hmg/ddv639] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023] Open
|
6
|
Fortenbach CR, Kessler C, Peinado Allina G, Burns ME. Speeding rod recovery improves temporal resolution in the retina. Vision Res 2015; 110:57-67. [PMID: 25748270 DOI: 10.1016/j.visres.2015.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
The temporal resolution of the visual system progressively increases with light intensity. Under scotopic conditions, temporal resolution is relatively poor, and may be limited by both retinal and cortical processes. Rod photoresponses themselves are quite slow because of the slowly deactivating biochemical cascade needed for light transduction. Here, we have used a transgenic mouse line with faster than normal rod phototransduction deactivation (RGS9-overexpressors) to test whether rod signaling to second-order retinal neurons is rate-limited by phototransduction or by other mechanisms. We compared electrical responses of individual wild-type and RGS9-overexpressing (RGS9-ox) rods to steady illumination and found that RGS9-ox rods required 2-fold brighter light for comparable activation, owing to faster G-protein deactivation. When presented with flickering stimuli, RGS9-ox rods showed greater magnitude fluctuations around a given steady-state current amplitude. Likewise, in vivo electroretinography (ERG) and whole-cell recording from OFF-bipolar, rod bipolar, and horizontal cells of RGS9-ox mice displayed larger than normal magnitude flicker responses, demonstrating an improved ability to transmit frequency information across the rod synapse. Slow phototransduction recovery therefore limits synaptic transmission of increments and decrements of light intensity across the first retinal synapse in normal retinas, apparently sacrificing temporal responsiveness for greater overall sensitivity in ambient light.
Collapse
Affiliation(s)
| | - Christopher Kessler
- Center for Neuroscience, University of California Davis, Davis, CA 95616, United States.
| | - Gabriel Peinado Allina
- Center for Neuroscience, University of California Davis, Davis, CA 95616, United States.
| | - Marie E Burns
- Center for Neuroscience, University of California Davis, Davis, CA 95616, United States; Depts. of Ophthalmology & Vision Science and Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
7
|
Pan Y, Bhattarai S, Modestou M, Drack AV, Chetkovich DM, Baker SA. TRIP8b is required for maximal expression of HCN1 in the mouse retina. PLoS One 2014; 9:e85850. [PMID: 24409334 PMCID: PMC3883711 DOI: 10.1371/journal.pone.0085850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/31/2013] [Indexed: 01/04/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are cation-selective channels present in retina, brain and heart. The activity of HCN channels contributes to signal integration, cell excitability and pacemaker activity. HCN1 channels expressed in photoreceptors participate in keeping light responses transient and are required for normal mesopic vision. The subcellular localization of HCN1 varies among cell types. In photoreceptors HCN1 is concentrated in the inner segments while in other retinal neurons, HCN1 is evenly distributed though the cell. This is in contrast to hippocampal neurons where HCN1 is concentrated in a subset of dendrites. A key regulator of HCN1 trafficking and activity is tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b). Multiple splice isoforms of TRIP8b are expressed throughout the brain and can differentially regulate the surface expression and activity of HCN1. The purpose of the present study was to determine which isoforms of TRIP8b are expressed in the retina and to test if loss of TRIP8b alters HCN1 expression or trafficking. We found that TRIP8b colocalizes with HCN1 in multiple retina neurons and all major splice isoforms of TRIP8b are expressed in the retina. Photoreceptors express three different isoforms. In TRIP8b knockout mice, the ability of HCN1 to traffic to the surface of retinal neurons is unaffected. However, there is a large decrease in the total amount of HCN1. We conclude that TRIP8b in the retina is needed to achieve maximal expression of HCN1.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Modestos Modestou
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Dane M. Chetkovich
- The Ken & Ruth Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sheila A. Baker
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
8
|
Schmitz F, Natarajan S, Venkatesan JK, Wahl S, Schwarz K, Grabner CP. EF hand-mediated Ca- and cGMP-signaling in photoreceptor synaptic terminals. Front Mol Neurosci 2012; 5:26. [PMID: 22393316 PMCID: PMC3289946 DOI: 10.3389/fnmol.2012.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022] Open
Abstract
Photoreceptors, the light-sensitive receptor neurons of the retina, receive and transmit a plethora of visual informations from the surrounding world. Photoreceptors capture light and convert this energy into electrical signals that are conveyed to the inner retina. For synaptic communication with the inner retina, photoreceptors make large active zones that are marked by synaptic ribbons. These unique synapses support continuous vesicle exocytosis that is modulated by light-induced, graded changes of membrane potential. Synaptic transmission can be adjusted in an activity-dependent manner, and at the synaptic ribbons, Ca2+- and cGMP-dependent processes appear to play a central role. EF-hand-containing proteins mediate many of these Ca2+- and cGMP-dependent functions. Since continuous signaling of photoreceptors appears to be prone to malfunction, disturbances of Ca2+- and cGMP-mediated signaling in photoreceptors can lead to visual defects, retinal degeneration (rd), and even blindness. This review summarizes aspects of signal transmission at the photoreceptor presynaptic terminals that involve EF-hand-containing Ca2+-binding proteins.
Collapse
Affiliation(s)
- Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University Saarland, Germany
| | | | | | | | | | | |
Collapse
|