1
|
Heigwer F, Scheeder C, Bageritz J, Yousefian S, Rauscher B, Laufer C, Beneyto-Calabuig S, Funk MC, Peters V, Boulougouri M, Bilanovic J, Miersch T, Schmitt B, Blass C, Port F, Boutros M. A global genetic interaction network by single-cell imaging and machine learning. Cell Syst 2023; 14:346-362.e6. [PMID: 37116498 DOI: 10.1016/j.cels.2023.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/17/2022] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
Cellular and organismal phenotypes are controlled by complex gene regulatory networks. However, reference maps of gene function are still scarce across different organisms. Here, we generated synthetic genetic interaction and cell morphology profiles of more than 6,800 genes in cultured Drosophila cells. The resulting map of genetic interactions was used for machine learning-based gene function discovery, assigning functions to genes in 47 modules. Furthermore, we devised Cytoclass as a method to dissect genetic interactions for discrete cell states at the single-cell resolution. This approach identified an interaction of Cdk2 and the Cop9 signalosome complex, triggering senescence-associated secretory phenotypes and immunogenic conversion in hemocytic cells. Together, our data constitute a genome-scale resource of functional gene profiles to uncover the mechanisms underlying genetic interactions and their plasticity at the single-cell level.
Collapse
Affiliation(s)
- Florian Heigwer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen am Rhein, Germany
| | - Christian Scheeder
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Josephine Bageritz
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; Center of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Schayan Yousefian
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Benedikt Rauscher
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christina Laufer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sergi Beneyto-Calabuig
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Maja Christina Funk
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Vera Peters
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Maria Boulougouri
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jana Bilanovic
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thilo Miersch
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Schmitt
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Claudia Blass
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Fillip Port
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
3
|
Martínez-Cano DJ, Bor G, Moya A, Delaye L. Testing the Domino Theory of Gene Loss in Buchnera aphidicola: The Relevance of Epistatic Interactions. Life (Basel) 2018; 8:17. [PMID: 29843462 PMCID: PMC6027505 DOI: 10.3390/life8020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
The domino theory of gene loss states that when some particular gene loses its function and cripples a cellular function, selection will relax in all functionally related genes, which may allow for the non-functionalization and loss of these genes. Here we study the role of epistasis in determining the pattern of gene losses in a set of genes participating in cell envelope biogenesis in the endosymbiotic bacteria Buchnera aphidicola. We provide statistical evidence indicating pairs of genes in B. aphidicola showing correlated gene loss tend to have orthologs in Escherichia coli known to have alleviating epistasis. In contrast, pairs of genes in B. aphidicola not showing correlated gene loss tend to have orthologs in E. coli known to have aggravating epistasis. These results suggest that during the process of genome reduction in B. aphidicola by gene loss, positive or alleviating epistasis facilitates correlated gene losses while negative or aggravating epistasis impairs correlated gene losses. We interpret this as evidence that the reduced proteome of B. aphidicola contains less pathway redundancy and more compensatory interactions, mimicking the situation of E. coli when grown under environmental constrains.
Collapse
Affiliation(s)
- David J Martínez-Cano
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| | - Gil Bor
- CIMAT, A.P. 402, Guanajuato 36000, Gto., Mexico.
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, Avenida de Catalunya 21, 46020 València, Spain.
- Institute for Integrative Systems Biology, Universitat de València, Calle Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Luis Delaye
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
4
|
Solis GP, Bilousov O, Koval A, Lüchtenborg AM, Lin C, Katanaev VL. Golgi-Resident Gαo Promotes Protrusive Membrane Dynamics. Cell 2017; 170:939-955.e24. [PMID: 28803726 DOI: 10.1016/j.cell.2017.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/30/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
To form protrusions like neurites, cells must coordinate their induction and growth. The first requires cytoskeletal rearrangements at the plasma membrane (PM), the second requires directed material delivery from cell's insides. We find that the Gαo-subunit of heterotrimeric G proteins localizes dually to PM and Golgi across phyla and cell types. The PM pool of Gαo induces, and the Golgi pool feeds, the growing protrusions by stimulated trafficking. Golgi-residing KDELR binds and activates monomeric Gαo, atypically for G protein-coupled receptors that normally act on heterotrimeric G proteins. Through multidimensional screenings identifying > 250 Gαo interactors, we pinpoint several basic cellular activities, including vesicular trafficking, as being regulated by Gαo. We further find small Golgi-residing GTPases Rab1 and Rab3 as direct effectors of Gαo. This KDELR → Gαo → Rab1/3 signaling axis is conserved from insects to mammals and controls material delivery from Golgi to PM in various cells and tissues.
Collapse
Affiliation(s)
- Gonzalo P Solis
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland.
| | - Oleksii Bilousov
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Anne-Marie Lüchtenborg
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Chen Lin
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland; School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russian Federation.
| |
Collapse
|
5
|
D'Souza M, Sulakhe D, Wang S, Xie B, Hashemifar S, Taylor A, Dubchak I, Conrad Gilliam T, Maltsev N. Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks. Methods Mol Biol 2017; 1613:85-99. [PMID: 28849559 DOI: 10.1007/978-1-4939-7027-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent technological advances in genomics allow the production of biological data at unprecedented tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research critically depends on a seamless integration of the clinical, genomic, and experimental information with prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly available databases should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining.We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:D882-D887, 2016) ( http://lynx.cri.uchicago.edu ), a web-based database and knowledge extraction engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB) and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or conditions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various translational projects.
Collapse
Affiliation(s)
- Mark D'Souza
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, 60637, USA.
- Argonne National Laboratory, Building 221, Room: A142, 9700 South Cass Avenue, Argonne, IL, 60439, USA.
| | - Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, 60637, USA
- Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Sheng Wang
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, 60637, USA
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, 60637, USA
| | - Bing Xie
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, 60637, USA
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Somaye Hashemifar
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, 60637, USA
| | - Andrew Taylor
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, 60637, USA
| | - Inna Dubchak
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - T Conrad Gilliam
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, 60637, USA
- Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, 60637, USA
- Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
6
|
Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K, Tyers M. The BioGRID interaction database: 2015 update. Nucleic Acids Res 2014; 43:D470-8. [PMID: 25428363 PMCID: PMC4383984 DOI: 10.1093/nar/gku1204] [Citation(s) in RCA: 648] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749 912 interactions as drawn from 43 149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control.
Collapse
Affiliation(s)
- Andrew Chatr-Aryamontri
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Bobby-Joe Breitkreutz
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Lorrie Boucher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Daici Chen
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Chris Stark
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Ashton Breitkreutz
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Nadine Kolas
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Lara O'Donnell
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Teresa Reguly
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Julie Nixon
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Lindsay Ramage
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Andrew Winter
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Adnane Sellam
- Centre Hospitalier de l'Université Laval (CHUL), Québec, Québec G1V 4G2, Canada
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jodi Hirschman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Chandra Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael S Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Kara Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
7
|
McDonald MLN, Mattheisen M, Cho MH, Liu YY, Harshfield B, Hersh CP, Bakke P, Gulsvik A, Lange C, Beaty TH, Silverman EK. Beyond GWAS in COPD: probing the landscape between gene-set associations, genome-wide associations and protein-protein interaction networks. Hum Hered 2014; 78:131-9. [PMID: 25171373 PMCID: PMC4415367 DOI: 10.1159/000365589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To use a systems biology approach to integrate genotype and protein-protein interaction (PPI) data to identify disease network modules associated with chronic obstructive pulmonary disease (COPD) and to perform traditional pathway analysis. METHODS We utilized a standard gene-set association approach (FORGE) using gene-based association analysis and gene-set definitions from the molecular signatures database (MSigDB). As a discovery step, we analyzed GWAS results from 2 well-characterized COPD cohorts: COPDGene and GenKOLS. We used a third well-characterized COPD case-control cohort for replication: ECLIPSE. Next, we used dmGWAS, a method that integrates GWAS results with PPI, to identify COPD disease modules. RESULTS No gene-sets reached experiment-wide significance in either discovery population. We identified a consensus network of 10 genes identified in modules by integrating GWAS results with PPI that replicated in COPDGene, GenKOLS, and ECLIPSE. Members of 4 gene-sets were enriched among these 10 genes: (i) lung adenocarcinoma tumor-sequencing genes, (ii) IL-7 pathway genes, (iii) kidney cell response to arsenic, and (iv) CD4 T-cell responses. Further, several genes have also been associated with pathophysiology relevant to COPD including KCNK3, NEDD4L, and RIN3. In particular, KCNK3 has been associated with pulmonary arterial hypertension, a common complication in advanced COPD. CONCLUSION We report a set of new genes that may influence the etiology of COPD that would not have been identified using traditional GWAS and pathway analyses alone.
Collapse
Affiliation(s)
- Merry-Lynn Noelle McDonald
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuel Mattheisen
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedicine and Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Harshfield
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Terri H. Beaty
- Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ, Williams P, Endres JL, Bayles KW, Fey PD, Yajjala VK, Widhelm T, Hawkins E, Lewis K, Parfett S, Scowen L, Peacock SJ, Holden M, Wilson D, Read TD, van den Elsen J, Priest NK, Feil EJ, Hurst LD, Josefsson E, Massey RC. Predicting the virulence of MRSA from its genome sequence. Genome Res 2014; 24:839-49. [PMID: 24717264 PMCID: PMC4009613 DOI: 10.1101/gr.165415.113] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial virulence is a complex and often multifactorial phenotype, intricately linked to a pathogen’s evolutionary trajectory. Toxicity, the ability to destroy host cell membranes, and adhesion, the ability to adhere to human tissues, are the major virulence factors of many bacterial pathogens, including Staphylococcus aureus. Here, we assayed the toxicity and adhesiveness of 90 MRSA (methicillin resistant S. aureus) isolates and found that while there was remarkably little variation in adhesion, toxicity varied by over an order of magnitude between isolates, suggesting different evolutionary selection pressures acting on these two traits. We performed a genome-wide association study (GWAS) and identified a large number of loci, as well as a putative network of epistatically interacting loci, that significantly associated with toxicity. Despite this apparent complexity in toxicity regulation, a predictive model based on a set of significant single nucleotide polymorphisms (SNPs) and insertion and deletions events (indels) showed a high degree of accuracy in predicting an isolate’s toxicity solely from the genetic signature at these sites. Our results thus highlight the potential of using sequence data to determine clinically relevant parameters and have further implications for understanding the microbial virulence of this opportunistic pathogen.
Collapse
Affiliation(s)
- Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Baryshnikova A, Costanzo M, Myers CL, Andrews B, Boone C. Genetic Interaction Networks: Toward an Understanding of Heritability. Annu Rev Genomics Hum Genet 2013; 14:111-33. [DOI: 10.1146/annurev-genom-082509-141730] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Michael Costanzo
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Brenda Andrews
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 3E1, Canada;
| | - Charles Boone
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 3E1, Canada;
| |
Collapse
|