1
|
Nicholson V, Meese E, Boothby TC. Osmolyte-IDP interactions during desiccation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:39-61. [PMID: 39947753 DOI: 10.1016/bs.pmbts.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Desiccation, the extreme loss of water, poses a significant challenge to living organisms. Desiccation-tolerant organisms combat this in part by accumulating desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their own, combinations of the two can work synergistically to provide enhanced protection and survival. This review summarises our understanding of the interactions between DT-IDPs and osmolytes during desiccation, and explores possible molecular mechanisms underlying them. Using recent literature on DT-IDPs and on the broader study of IDP-osmolyte interactions, we propose several hypotheses that explain interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques from literature on DT-IDPs that we feel are useful to the study of IDPs in other contexts.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Emma Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States.
| |
Collapse
|
2
|
Choi KJ, Quan MD, Qi C, Lee JH, Tsoi PS, Zahabiyon M, Bajic A, Hu L, Prasad BVV, Liao SCJ, Li W, Ferreon ACM, Ferreon JC. NANOG prion-like assembly mediates DNA bridging to facilitate chromatin reorganization and activation of pluripotency. Nat Cell Biol 2022; 24:737-747. [PMID: 35484250 PMCID: PMC9106587 DOI: 10.1038/s41556-022-00896-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
Abstract
Human NANOG expression resets stem cells to ground-state pluripotency. Here we identify the unique features of human NANOG that relate to its dose-sensitive function as a master transcription factor. NANOG is largely disordered, with a C-terminal prion-like domain that phase-transitions to gel-like condensates. Full-length NANOG readily forms higher-order oligomers at low nanomolar concentrations, orders of magnitude lower than typical amyloids. Using single-molecule Förster resonance energy transfer and fluorescence cross-correlation techniques, we show that NANOG oligomerization is essential for bridging DNA elements in vitro. Using chromatin immunoprecipitation sequencing and Hi-C 3.0 in cells, we validate that NANOG prion-like domain assembly is essential for specific DNA recognition and distant chromatin interactions. Our results provide a physical basis for the indispensable role of NANOG in shaping the pluripotent genome. NANOG's unique ability to form prion-like assemblies could provide a cooperative and concerted DNA bridging mechanism that is essential for chromatin reorganization and dose-sensitive activation of ground-state pluripotency.
Collapse
Affiliation(s)
- Kyoung-Jae Choi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - My Diem Quan
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chuangye Qi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Joo-Hyung Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Phoebe S Tsoi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mahla Zahabiyon
- Department of Molecular and Human Genetics, Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA. .,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
| | - Allan Chris M Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Josephine C Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Moosa MM, Ferreon ACM, Deniz AA. Forced folding of a disordered protein accesses an alternative folding landscape. Chemphyschem 2014; 16:90-4. [PMID: 25345588 DOI: 10.1002/cphc.201402661] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 11/12/2022]
Abstract
Intrinsically disordered proteins (IDPs) are involved in diverse cellular functions. Many IDPs can interact with multiple binding partners, resulting in their folding into alternative ligand-specific functional structures. For such multi-structural IDPs, a key question is whether these multiple structures are fully encoded in the protein sequence, as is the case in many globular proteins. To answer this question, here we employed a combination of single-molecule and ensemble techniques to compare ligand-induced and osmolyte-forced folding of α-synuclein. Our results reveal context-dependent modulation of the protein's folding landscape, suggesting that the codes for the protein's native folds are partially encoded in its primary sequence, and are completed only upon interaction with binding partners. Our findings suggest a critical role for cellular interactions in expanding the repertoire of folds and functions available to disordered proteins.
Collapse
Affiliation(s)
- Mahdi Muhammad Moosa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 (USA)
| | | | | |
Collapse
|