1
|
Cowman S, Fan YN, Pizer B, Sée V. Decrease of Nibrin expression in chronic hypoxia is associated with hypoxia-induced chemoresistance in some brain tumour cells. BMC Cancer 2019; 19:300. [PMID: 30943920 PMCID: PMC6446413 DOI: 10.1186/s12885-019-5476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/14/2019] [Indexed: 12/03/2022] Open
Abstract
Background Solid tumours are less oxygenated than normal tissues. This is called tumour hypoxia and leads to resistance to radiotherapy and chemotherapy. The molecular mechanisms underlying such resistance have been investigated in a range of tumour types, including the adult brain tumours glioblastoma, yet little is known for paediatric brain tumours. Medulloblastoma (MB) is the most common malignant brain tumour in children. We aimed to elucidate the impact of hypoxia on the sensitivity of MB cells to chemo- and radiotherapy. Methods We used two MB cell line (D283-MED and MEB-Med8A) and a widely used glioblastoma cell line (U87MG) for comparison. We applied a range of molecular and cellular techniques to measure cell survival, cell cycle progression, protein expression and DNA damage combined with a transcriptomic micro-array approach in D283-MED cells, for global gene expression analysis in acute and chronic hypoxic conditions. Results In D283-MED and U87MG, chronic hypoxia (5 days), but not acute hypoxia (24 h) induced resistance to chemotherapy and X-ray irradiation. This acquired resistance upon chronic hypoxia was present but less pronounced in MEB-Med8A cells. Using transcriptomic analysis in D283-MED cells, we found a large transcriptional remodelling upon long term hypoxia, in particular the expression of a number of genes involved in detection and repair of double strand breaks (DSB) was altered. The levels of Nibrin (NBN) and MRE11, members of the MRN complex (MRE11/Rad50/NBN) responsible for DSB recognition, were significantly down-regulated. This was associated with a reduction of Ataxia Telangiectasia Mutated (ATM) activation by etoposide, indicating a profound dampening of the DNA damage signalling in hypoxic conditions. As a consequence, p53 activation by etoposide was reduced, and cell survival enhanced. Whilst U87MG shared the same dampened p53 activity, upon chemotherapeutic drug treatment in chronic hypoxic conditions, these cells used a different mechanism, independent of the DNA damage pathway. Conclusion Together our results demonstrate a new mechanism explaining hypoxia-induced resistance involving the alteration of the response to DSB in D283-MED cells, but also highlight the cell type to cell type diversity and the necessity to take into account the differing tumour genetic make-up when considering re-sensitisation therapeutic protocols. Electronic supplementary material The online version of this article (10.1186/s12885-019-5476-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Cowman
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK
| | - Yuen Ngan Fan
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK.,University of Manchester, Faculty of Biology, Medicine and Health, M13 9PT, Manchester, UK
| | - Barry Pizer
- University of Liverpool and Alder Hey Children's NHS Foundation Trust, member of Liverpool Health Partners., Liverpool, UK
| | - Violaine Sée
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK.
| |
Collapse
|
2
|
Accounting for Two Forms of Hypoxia for Predicting Tumour Control Probability in Radiotherapy: An In Silico Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:183-187. [PMID: 30178343 DOI: 10.1007/978-3-319-91287-5_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The progress in functional imaging and dose delivery has opened the possibility of targeting tumour hypoxia with radiotherapy. Advanced approaches apply quantitative information on tumour oxygenation retrieved from imaging in dose prescription. These do not, however, take into account the potential difference in radiosensitivity of chronically and acutely hypoxic cells. It was the aim of this study to evaluate the implications of assuming the same or different sensitivities for the hypoxic cells. An in silico 3D-model of a hypoxic tumour with heterogeneous oxygenation was used to model the probabilities of tumour control with different radiotherapy regimens. The results show that by taking into account the potential lower radioresistance of chronically hypoxic cells deprived of oxygen and nutrients, the total dose required to achieve a certain level of control is substantially reduced for a given fractionation scheme in comparison to the case when chronically and acutely hypoxic cells are assumed to have similar features. The results also suggest that the presence of chronic hypoxia could explain the success of radiotherapy for some hypoxic tumours. Given the implications for clinical dose escalation trials, further exploration of the influence of the different forms of hypoxia on treatment outcome is therefore warranted.
Collapse
|
3
|
Sun X, Ackerstaff E, He F, Xing L, Hsiao HT, Koutcher JA, Ling CC, Li GC. Visualizing the antivascular effect of bortezomib on the hypoxic tumor microenvironment. Oncotarget 2016; 6:34732-44. [PMID: 26416246 PMCID: PMC4741486 DOI: 10.18632/oncotarget.5300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 09/11/2015] [Indexed: 01/07/2023] Open
Abstract
Bortezomib, a novel proteasome inhibitor, has been approved for treating multiple myeloma and mantle cell lymphoma and studied pre-clinically and clinically for solid tumors. Preferential cytotoxicity of bortezomib was found toward hypoxic tumor cells and endothelial cells in vitro. The purpose of this study is to investigate the role of a pretreatment hypoxic tumor microenvironment on the effects of bortezomib in vitro and ex vivo, and explore the feasibility of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) to noninvasively evaluate the biological effects of bortezomib. It was shown in vitro by Western blot, flow cytometry, and ELISA that bortezomib accumulated HIF-1α in non-functional forms and blocks its hypoxia response in human colorectal cancer cell lines. Ex vivo experiments were performed with fluorescent immunohistochemical staining techniques using multiple endogenous and exogenous markers to identify hypoxia (pimonidazole, HRE-TKeGFP), blood flow/permeability (Hoechst 33342), micro-vessels (CD31 and SMA), apoptosis (cleaved caspase 3) and hypoxia response (CA9). After bortezomib administration, overall apoptosis index was significantly increased and blood perfusion was dramatically decreased in tumor xenografts. More importantly, apoptosis signals were found preferentially located in moderate and severe pretreatment hypoxic regions in both tumor and endothelial cells. Meanwhile, DCE MRI examinations showed that the tumor blood flow and permeability decreased significantly after bortezomib administration. The present study revealed that bortezomib reduces tumor hypoxia response and blood perfusion, thus, presenting antivascular properties. It will be important to determine the hypoxic/perfusion status pre- and during treatment at further translational studies.
Collapse
Affiliation(s)
- Xiaorong Sun
- Department of Radiology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fuqiu He
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Hung Tsung Hsiao
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Current address: Department of Anesthesiology, E-Da Hospital, Yanchau District, Kaohsiung, Taiwan
| | - Jason A Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Clifton Ling
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gloria C Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, Sethumadhavan S, Philbrook P, Ko K, Cannici R, Thayer M, Rodig S, Kutok JL, Jackson EK, Karger B, Podack ER, Ohta A, Sitkovsky MV. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 2016; 7:277ra30. [PMID: 25739764 DOI: 10.1126/scitranslmed.aaa1260] [Citation(s) in RCA: 448] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antitumor T cells either avoid or are inhibited in hypoxic and extracellular adenosine-rich tumor microenvironments (TMEs) by A2A adenosine receptors. This may limit further advances in cancer immunotherapy. There is a need for readily available and safe treatments that weaken the hypoxia-A2-adenosinergic immunosuppression in the TME. Recently, we reported that respiratory hyperoxia decreases intratumoral hypoxia and concentrations of extracellular adenosine. We show that it also reverses the hypoxia-adenosinergic immunosuppression in the TME. This, in turn, stimulates (i) enhanced intratumoral infiltration and reduced inhibition of endogenously developed or adoptively transfered tumor-reactive CD8 T cells, (ii) increased proinflammatory cytokines and decreased immunosuppressive molecules, such as transforming growth factor-β (TGF-β), (iii) weakened immunosuppression by regulatory T cells, and (iv) improved lung tumor regression and long-term survival in mice. Respiratory hyperoxia also promoted the regression of spontaneous metastasis from orthotopically grown breast tumors. These effects are entirely T cell- and natural killer cell-dependent, thereby justifying the testing of supplemental oxygen as an immunological coadjuvant to combine with existing immunotherapies for cancer.
Collapse
Affiliation(s)
- Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Jorgen Kjaergaard
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Dmitriy Lukashev
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Taylor H Schreiber
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bryan Belikoff
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Robert Abbott
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Shalini Sethumadhavan
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Phaethon Philbrook
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Kami Ko
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Ryan Cannici
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Molly Thayer
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, MA 02115, USA
| | - Jeffrey L Kutok
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, MA 02115, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Barry Karger
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Michail V Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA. Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Cellular memory of hypoxia elicits neuroblastoma metastasis and enables invasion by non-aggressive neighbouring cells. Oncogenesis 2015; 4:e138. [PMID: 25664931 PMCID: PMC4338426 DOI: 10.1038/oncsis.2014.52] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022] Open
Abstract
Therapies targeting cancer metastasis are challenging owing to the complexity of the metastatic process and the high number of effectors involved. Although tumour hypoxia has previously been associated with increased aggressiveness as well as resistance to radio- and chemotherapy, the understanding of a direct link between the level and duration of hypoxia and the individual steps involved in metastasis is still missing. Using live imaging in a chick embryo model, we have demonstrated that the exposure of neuroblastoma cells to 1% oxygen for 3 days was capable of (1) enabling cell migration towards blood vessels, (2) slowing down their velocity within blood vessels to facilitate extravasation and (3) promoting cell proliferation in primary and secondary sites. We have shown that cells do not have to be hypoxic anymore to exhibit these acquired capabilities as a long-term memory of prior hypoxic exposure is kept. Furthermore, non-hypoxic cells can be influenced by neighbouring hypoxic preconditioned cells and be entrained in the metastatic progression. The acquired aggressive phenotype relies on hypoxia-inducible factor (HIF)-dependent transcription of a number of genes involved in metastasis and can be impaired by HIF inhibition. Altogether, our results demonstrate the need to consider both temporal and spatial tumour heterogeneity because cells can 'remember' an earlier environment and share their acquired phenotype with their close neighbours. As a consequence, it is necessary to monitor the correct hypoxic markers to be able to predict the consequences of the cells' history on their behaviour and their potential response to therapies.
Collapse
|