1
|
Podsednik A, Xu HN, Li LZ. Passage dependence of NADH redox status and reactive oxygen species level in vitro in triple-negative breast cancer cell lines with different invasiveness. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:27. [PMID: 39534579 PMCID: PMC11557164 DOI: 10.21037/tbcr-24-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Background The redox status of nicotinamide adenine dinucleotide (NAD; including oxidized form NAD+ and reduced form NADH) plays key roles in both health and disease and has been actively studied to develop cancer biomarkers and therapeutic strategies. With the optical redox imaging (ORI) technique, we have been investigating the relationship of NADH redox status, reactive oxygen species (ROS), and invasiveness in breast cancer cell cultures, and have associated higher invasiveness with more oxidized NADH redox state. However, the cell cultures may have phenotypic drift and metabolic change with increased passage numbers. Methods We investigated the passage-dependence of NADH redox status and ROS levels in two triple-negative breast cancer (TNBC) cell cultures: the more invasive/metastatic MDA-MB-231 and the less invasive/metastatic HCC1806 cell lines. We measured the NADH redox status, redox plasticity, and cytoplasmic and mitochondrial ROS levels under the basal condition and metabolic perturbations of the mitochondrial electron transport chain. We evaluated the dependence of redox and ROS profiles on the cell passage number by comparing the early (<20 passages) with the late (>60 passages) passage cells. Results (I) NADH redox and ROS baselines are stable and independent of cell passage number, but can vary with passage number under metabolic perturbations depending on specific perturbation and cell line; (II) NADH redox status and intracellular ROS levels can change discordantly in cancer cells; (III) under both basal and metabolically perturbed conditions, the more invasive cell line has a more oxidized NADH redox status with a higher basal cytoplasmic ROS level than the less invasive line, regardless of passage number. Conclusions The general correlation between redox, ROS, and invasiveness in studied TNBC cells is not very sensitive to passage number. These results indicate that NADH redox and basal ROS status in TNBC likely reflect the intrinsic progressive nature of TNBC cells.
Collapse
Affiliation(s)
- Allison Podsednik
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Z Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Peng A, Xu HN, Moon L, Zhang P, Li LZ. Quantitative Optical Redox Imaging of Melanoma Xenografts with Different Metastatic Potentials. Cancers (Basel) 2024; 16:1669. [PMID: 38730620 PMCID: PMC11083304 DOI: 10.3390/cancers16091669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
To develop imaging biomarkers for tumors aggressiveness, our previous optical redox imaging (ORI) studies of the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp, containing flavin adenine dinucleotide, i.e., FAD) in tumor xenografts of human melanoma associated the high optical redox ratio (ORR = Fp/(Fp + NADH)) and its heterogeneity to the high invasive/metastatic potential, without having reported quantitative results for NADH and Fp. Here, we implemented a calibration procedure to facilitate imaging the nominal concentrations of tissue NADH and Fp in the mouse xenografts of two human melanoma lines, an indolent less metastatic A375P and a more metastatic C8161. Images of the redox indices (NADH, Fp, ORR) revealed the existence of more oxidized areas (OAs) and more reduced areas (RAs) within individual tumors. ORR was found to be higher and NADH lower in C8161 compared to that of A375P xenografts, both globally for the whole tumors and locally in OAs. The ORR in the OA can differentiate xenografts with a higher statistical significance than the global averaged ORR. H&E staining of the tumors indicated that the redox differences we identified were more likely due to intrinsically different cell metabolism, rather than variations in cell density.
Collapse
Affiliation(s)
- April Peng
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.P.); (H.N.X.); (L.M.)
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.P.); (H.N.X.); (L.M.)
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily Moon
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.P.); (H.N.X.); (L.M.)
| | - Paul Zhang
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.P.); (H.N.X.); (L.M.)
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Magni M, Biancon G, Rizzitano S, Cavanè A, Paolizzi C, Dugo M, Corradini P, Carniti C. Tyrosine kinase inhibition to improve anthracycline-based chemotherapy efficacy in T-cell lymphoma. Br J Cancer 2019; 121:567-577. [PMID: 31474759 PMCID: PMC6889385 DOI: 10.1038/s41416-019-0557-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Anthracycline-containing regimens, namely cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) or CHOEP (CHOP + etoposide), represent the current standard of care for patients with newly diagnosed peripheral T-cell lymphomas (PTCLs), although responses are unsatisfactory. In this study, we investigated the pathways able to mitigate the sensitivity to CHOP-based regimens in preclinical models of T-cell lymphoma (TCL) to select agents for the development of CHOP-based drug combinations. METHODS We performed gene expression profiling of malignant T-cell lines exposed to CHOEP; flow cytometry was employed to study the effects of drug combinations on cell viability, cell cycle distribution, apoptosis and mitochondrial membrane depolarisation. Western blot analyses were performed to study cell signalling downstream of the T-cell receptor and apoptosis. The in vivo effect of the drug combination was tested in xenograft models. RESULTS We highlighted a modulation of tyrosine kinases belonging to the T-cell receptor pathway upon chemotherapy that provided the rationale for combining the tyrosine kinase inhibitor dasatinib with CHOEP. Dasatinib improves CHOEP activity and reduces viability in vitro. Furthermore, combination treatment results in tumour growth inhibition in in vivo xenograft mouse models. CONCLUSIONS Our data provide the rationale for clinical testing of the dasatinib-CHOEP combination in patients with T-cell lymphoma.
Collapse
Affiliation(s)
- Martina Magni
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Giulia Biancon
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
- Yale University School of Medicine, Comprehensive Cancer Center, Hematology, New Haven, CT, 06511, USA
| | - Sara Rizzitano
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Cavanè
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Paolizzi
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Corradini
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Cristiana Carniti
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
4
|
Zhao H, Li S, Wang G, Zhao W, Zhang D, Wang F, Li W, Sun L. Study of the mechanism by which dinaciclib induces apoptosis and cell cycle arrest of lymphoma Raji cells through a CDK1-involved pathway. Cancer Med 2019; 8:4348-4358. [PMID: 31207099 PMCID: PMC6675732 DOI: 10.1002/cam4.2324] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/02/2023] Open
Abstract
Objective This study aimed to identify and evaluate the mechanism by which apoptosis and cell cycle arrest were induced by dinaciclib in lymphoma Raji cells. Methods The colony formation assay was used to detect cell proliferation of Raji cells. Cell cycle arrest and cell apoptosis were determined by flow cytometry and TUNEL assays, respectively. Protein expression related to the Raji cell state was evaluated by Western blot. The Raji/Dinaciclib drug‐resistant cell line was established, where the regulating functions of CDK1‐involved pathway were verified. In addition, the effect of dinaciclib in vivo was examined in orthotopically implanted tumors in nude mice. Results Cell apoptosis was induced, and DNA synthesis ability was decreased in a time‐dependent manner in dinaciclib‐treated lymphoma Raji cells. Furthermore, the cell cycle was found to be blocked in the G2/M Phase. Further study indicated that CDK1‐involved pathway played a key regulatory role in this process. It was revealed by cell transfection that the expression of cell cycle proteins was downregulated after treatment with dinaciclib through a CDK1‐involved pathway, which eventually led to apoptosis. Knockdown of CDK1 restored the sensitivity of the Raji/Dinaciclib cells to dinaciclib. Xenograft model of nude mice showed that dinaciclib treatment in vivo could effectively inhibit tumor growth, consistent with the experiment results mentioned before. Conclusion In this study, we clarified the mechanisms through which dinaciclib induces Raji cell apoptosis and blocks the cell cycle through a CDK1‐involved pathway, which supported that dinaciclib had potential values in the treatment of lymphoma.
Collapse
Affiliation(s)
- Huayan Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shenglei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wugan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Barré FPY, Claes BSR, Dewez F, Peutz-Kootstra C, Munch-Petersen HF, Grønbæk K, Lund AH, Heeren RMA, Côme C, Cillero-Pastor B. Specific Lipid and Metabolic Profiles of R-CHOP-Resistant Diffuse Large B-Cell Lymphoma Elucidated by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging and in Vivo Imaging. Anal Chem 2018; 90:14198-14206. [PMID: 30422637 PMCID: PMC6328237 DOI: 10.1021/acs.analchem.8b02910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Diffuse
large B-cell lymphoma (DLBCL) is the most common B-cell
non-Hodgkin lymphoma. To treat this aggressive disease, R-CHOP, a
combination of immunotherapy (R; rituximab) and chemotherapy (CHOP;
cyclophosphamide, doxorubicin, vincristine, and prednisone), remains
the most commonly used regimen for newly diagnosed DLBCLs. However,
up to one-third of patients ultimately becomes refractory to initial
therapy or relapses after treatment, and the high mortality rate highlights
the urgent need for novel therapeutic approaches based upon selective
molecular targets. In order to understand the molecular mechanisms
underlying relapsed DLBCL, we studied differences in the lipid and
metabolic composition of nontreated and R-CHOP-resistant tumors, using
a combination of in vivo DLBCL xenograft models and mass spectrometry
imaging. Together, these techniques provide information regarding
analyte composition and molecular distributions of therapy-resistant
and sensitive areas. We found specific lipid and metabolic profiles
for R-CHOP-resistant tumors, such as a higher presence of phosphatidylinositol
and sphingomyelin fragments. In addition, we investigated intratumor
heterogeneity and identified specific lipid markers of viable and
necrotic areas. Furthermore, we could monitor metabolic changes and
found reduced adenosine triphosphate and increased adenosine monophosphate
in the R-CHOP-resistant tumors. This work highlights the power of
combining in vivo imaging and MSI to track molecular signatures in
DLBCL, which has potential application for other diseases.
Collapse
Affiliation(s)
- Florian P Y Barré
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Britt S R Claes
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Frédéric Dewez
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Carine Peutz-Kootstra
- Department of Pathology , Maastricht University Medical Center, Cardiovascular Research Institute Maastricht , 6229 HX Maastricht , The Netherlands
| | - Helga F Munch-Petersen
- Department of Haematology and Department of Pathology , Rigshospitalet , 2100 Copenhagen , Denmark
| | - Kirsten Grønbæk
- Epigenomlaboratoriet, Rigshospitalet Dept. 3733 , Bartholin Institute , Copenhagen Biocenter, 2200 Copenhagen , Denmark.,Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Christophe Côme
- Epigenomlaboratoriet, Rigshospitalet Dept. 3733 , Bartholin Institute , Copenhagen Biocenter, 2200 Copenhagen , Denmark.,Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| |
Collapse
|
6
|
Xu HN, Li LZ. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2014; 7:1430002. [PMID: 31827630 PMCID: PMC6905396 DOI: 10.1142/s179354581430002x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes as well as in the regulation of embryonic development and aging. To fluorimetrically assess the mitochondrial redox state, Dr. Chance and co-workers measured the fluorescence of NADH and oxidized flavoproteins (Fp) including flavin-adenine-dinucleotide (FAD) and demonstrated their ratio (i.e. the redox ratio) is a sensitive indicator of the mitochondrial redox states. The Chance redox scanner was built to simultaneously measure NADH and Fp in tissue at submillimeter scale in 3D using the freeze-trap protocol. This paper summarizes our recent research experience, development and new applications of the redox scanning technique in collaboration with Dr.Chance beginning in 2005. Dr. Chance initiated or actively involved in many of the projects during the last several years of his life. We advanced the redox scanning technique by measuring the nominal concentrations (in reference to the frozen solution standards) of the endogenous fluorescent analytes, i.e., [NADH] and [Fp] to quantify the redox ratios in various biological tissues. The advancement has enabled us to identify an array of the redox indices as quantitative imaging biomarkers (including [NADH], [Fp], [Fp]/([NADH] + [Fp]), [NADH]/[Fp], and their standard deviations) for studying some important biological questions on cancer and normal tissue metabolism. We found that the redox indices were associated or changed with (1) tumorigenesis (cancer versus non-cancer of human breast tissue biopsies); (2) tumor metastatic potential; (3) tumor glucose uptake; (4) tumor p53 status; (5) PI3K pathway activation in premalignant tissue; (6) therapeutic effects on tumors; (7) embryonic stem cell differentiation; (8) the heart under fasting. Together, our work demonstrated that the tissue redox indices obtained from the redox scanning technique may provide useful information about tissue metabolism and physiology status in normal and diseased tissues. The Chance redox scanner and other redox imaging techniques may have wide-ranging potential applications in many fields, such as cancer, diabetes, developmental process, mitochondrial diseases, neurodegenerative diseases, and aging.
Collapse
Affiliation(s)
- He N Xu
- Department of Radiology, Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Z Li
- Department of Radiology, Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Xu HN, Zhao H, Mir TA, Lee SC, Feng M, Choe R, Glickson JD, Li LZ. CHOP THERAPY INDUCED MITOCHONDRIAL REDOX STATE ALTERATION IN NON-HODGKIN'S LYMPHOMA XENOGRAFTS. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2013; 6:1350011. [PMID: 23745147 PMCID: PMC3672060 DOI: 10.1142/s1793545813500119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We are interested in investigating whether cancer therapy may alter the mitochondrial redox state in cancer cells to inhibit their growth and survival. The redox state can be imaged by the redox scanner that collects the fluorescence signals from both the oxidized-flavoproteins (Fp) and the reduced form of nicotinamide adenine dinucleotide (NADH) in snap-frozen tissues and has been previously employed to study tumor aggressiveness and treatment responses. Here, with the redox scanner we investigated the effects of chemotherapy on mouse xenografts of a human diffuse large B-cell lymphoma cell line (DLCL2). The mice were treated with CHOP therapy, i.e., cyclophosphamide (C) + hydroxydoxorubicin (H) + Oncovin (O) + prednisone (P) with CHO administration on day 1 and prednisone administration on days 1-5. The Fp content of the treated group was significantly decreased (p = 0.033) on day 5, and the mitochondrial redox state of the treated group was slightly more reduced than that of the control group (p = 0.048). The decrease of the Fp heterogeneity (measured by the mean standard deviation) had a border-line statistical significance (p = 0.071). The result suggests that the mitochondrial metabolism of lymphoma cells was slightly suppressed and the lymphomas became less aggressive after the CHOP therapy.
Collapse
Affiliation(s)
- H N Xu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA ; Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|