1
|
Yang L, Xinting C, Aie Z, Ruiqi X, Moreira P, Mei D. Insights into uncovered public health risks. The case of asthma attacks among archival workers: a cross-sectional study. Front Public Health 2024; 12:1397236. [PMID: 39234100 PMCID: PMC11371701 DOI: 10.3389/fpubh.2024.1397236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024] Open
Abstract
Objective To ascertain the prevalence of asthma attacks among archivists and identify the associated occupational factors in this understudied professional population. Methods We conducted a cross-sectional, questionnaire-based study among 1,002 archival workers. A multiple logistic regression was conducted to identify the association between asthma attacks and occupational exposures. The Strobe Protocol was applied. Results 999 workers were included in the final analysis with the asthma prevalence of 33.3%. Main factors associated with asthma attacks (OR [95% CI]) were the presence of chemically irritating odors (2.152 [1.532-3.024]), mold odors (1.747 [1.148-2.658]), and insects (1.409[1.041-1.907]). A significant synergistic effect was observed between chemical irritants and mold, the odds ratio was 7.098 (95% CI, 4.752-10.603). Conclusion There was a high prevalence of asthma attacks among archival workers, an under-studied population. Chemical irritants, molds and insects were associated with their asthma attacks. Notably, this study's data analysis has revealed a strong synergy (OR = 7.098) between chemical odors and molds in the workplace. While the existing international literature on this specific interaction remains somewhat limited, previous studies have already demonstrated the potential for chemical irritants, such as sulfur dioxide and ozone, to synergistically interact with inhalable allergens, including fungi, molds and dust mites. Consequently, this interaction seems to exacerbate asthma symptoms and perpetuate untreated exposure. Furthermore, in damp and damaged buildings, the presence of microbial components, such as cellular debris or spores released during fungal growth can trigger an inflammatory response, potentially served as a shared pathway for the development of asthma among individuals exposed to these hazardous factors.
Collapse
Affiliation(s)
- Liu Yang
- Shandong Provincial Chronic Disease Hospital, Qingdao, China
| | - Chen Xinting
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhang Aie
- Qilu Hospital, Shandong University, Jinan, China
| | - Xu Ruiqi
- School of Public Health, Qingdao University, Qingdao, China
| | - Paulo Moreira
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, International Healthcare Management Research and Development Centre (IHM-RDC), Jinan, China
- Henan Normal University, School of Social Affairs, Xinxiang, China
- Atlantica Instituto Universitario, Gestao em Saude, Oeiras, Portugal
| | - Dou Mei
- School of Public Health, Qingdao University, Qingdao, China
- Qingdao University Archives, Qingdao, China
| |
Collapse
|
2
|
Liu YS, Lin YC, Lin MC, Wu CC, Wang TN. Association of blood lipid profiles and asthma: A bidirectional two-sample Mendelian randomization study. Ann Hum Genet 2024; 88:307-319. [PMID: 38305494 DOI: 10.1111/ahg.12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Observational studies and meta-analyses have indicated associations between blood lipid profiles and asthma. However, the causal association is unknown. Therefore, this study investigated the causal relationship between blood lipid profiles and asthma using bidirectional Mendelian randomization analysis. METHODS AND MATERIALS Our analyses were performed using individual data from the Taiwan Biobank and summary statistics from the Asian Genetic Epidemiology Network (AGEN). The causal estimates between all genetic variants, exposures of interest and asthma were calculated using an inverse-variance weighted method based on Taiwan Biobank data from 24,853 participants (mean age, 48.8 years; 49.8% women). Sensitivity analyses, including the weighted median, MR Egger regression, MR-PRESSO, mode-based estimate, contamination mixture methods, and leave-one-out analysis, were applied to validate the results and detect pleiotropy. RESULTS In the inverse-variance weighted (IVW) analyses, we found evidence of a significant causal effect of an increased level of low-density lipoprotein cholesterol on asthma risk (βIVW = 1.338, p = 0.001). A genetically decreased level of high-density lipoprotein cholesterol was also associated with asthma risk (βIVW = -0.338, p = 0.01). We also found that an increased level of total cholesterol was associated with an increased risk of asthma (βIVW = 1.343, p = 0.001). Several sensitivity analyses generated consistent findings. We did not find evidence to support the causality between asthma and blood lipid profiles in either direction. CONCLUSION Our results supported the causal relationship between higher levels of LDL cholesterol and total cholesterol and lower levels of HDL cholesterol with an increased risk of asthma.
Collapse
Affiliation(s)
- Yi-Shian Liu
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Nai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Sengupta A, Dorn A, Jamshidi M, Schwob M, Hassan W, De Maddalena LL, Hugi A, Stucki AO, Dorn P, Marti TM, Wisser O, Stucki JD, Krebs T, Hobi N, Guenat OT. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front Pharmacol 2023; 14:1114739. [PMID: 36959848 PMCID: PMC10029733 DOI: 10.3389/fphar.2023.1114739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Prolonged exposure to environmental respirable toxicants can lead to the development and worsening of severe respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and fibrosis. The limited number of FDA-approved inhaled drugs for these serious lung conditions has led to a shift from in vivo towards the use of alternative in vitro human-relevant models to better predict the toxicity of inhaled particles in preclinical research. While there are several inhalation exposure models for the upper airways, the fragile and dynamic nature of the alveolar microenvironment has limited the development of reproducible exposure models for the distal lung. Here, we present a mechanistic approach using a new generation of exposure systems, the Cloud α AX12. This novel in vitro inhalation tool consists of a cloud-based exposure chamber (VITROCELL) that integrates the breathing AXLung-on-chip system (AlveoliX). The ultrathin and porous membrane of the AX12 plate was used to create a complex multicellular model that enables key physiological culture conditions: the air-liquid interface (ALI) and the three-dimensional cyclic stretch (CS). Human-relevant cellular models were established for a) the distal alveolar-capillary interface using primary cell-derived immortalized alveolar epithelial cells (AXiAECs), macrophages (THP-1) and endothelial (HLMVEC) cells, and b) the upper-airways using Calu3 cells. Primary human alveolar epithelial cells (AXhAEpCs) were used to validate the toxicity results obtained from the immortalized cell lines. To mimic in vivo relevant aerosol exposures with the Cloud α AX12, three different models were established using: a) titanium dioxide (TiO2) and zinc oxide nanoparticles b) polyhexamethylene guanidine a toxic chemical and c) an anti-inflammatory inhaled corticosteroid, fluticasone propionate (FL). Our results suggest an important synergistic effect on the air-blood barrier sensitivity, cytotoxicity and inflammation, when air-liquid interface and cyclic stretch culture conditions are combined. To the best of our knowledge, this is the first time that an in vitro inhalation exposure system for the distal lung has been described with a breathing lung-on-chip technology. The Cloud α AX12 model thus represents a state-of-the-art pre-clinical tool to study inhalation toxicity risks, drug safety and efficacy.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Aurélien Dorn
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mohammad Jamshidi
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Magali Schwob
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Widad Hassan
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Andreas Hugi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Andreas O. Stucki
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- *Correspondence: Andreas O. Stucki,
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | - Nina Hobi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
4
|
Mack SM, Madl AK, Pinkerton KE. Respiratory Health Effects of Exposure to Ambient Particulate Matter and Bioaerosols. Compr Physiol 2019; 10:1-20. [PMID: 31853953 PMCID: PMC7553137 DOI: 10.1002/cphy.c180040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers have been studying the respiratory health effects of ambient air pollution for more than 70 years. While air pollution as a whole can include gaseous, solid, and liquid constituents, this article focuses only on the solid and liquid fractions, termed particulate matter (PM). Although PM may contain anthropogenic, geogenic, and/or biogenic fractions, in this article, particles that originate from microbial, fungal, animal, or plant sources are distinguished from PM as bioaerosols. Many advances have been made toward understanding which particle and exposure characteristics most influence deposition and clearance processes in the respiratory tract. These characteristics include particle size, shape, charge, and composition as well as the exposure concentration and dose rate. Exposure to particles has been directly associated with the exacerbation and, under certain circumstances, onset of respiratory disease. The circumstances of exposure leading to disease are dependent on stressors such as human activity level and changing particle composition in the environment. Historically, researchers assumed that bioaerosols were too large to be inhaled into the deep lung, and thus, not applicable for study in conjunction with PM2.5 (the 2.5-μm and below size fraction that can reach the deep lung); however, this concept is beginning to be challenged. While there is extensive research on the health effects of PM and bioaerosols independent of each other, only limited work has been performed on their coexposure. Studying these two particle types as dual stressors to the respiratory system may aid in more thoroughly understanding the etiology of respiratory injury and disease. © 2020 American Physiological Society. Compr Physiol 10:1-20, 2020.
Collapse
Affiliation(s)
- Savannah M. Mack
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Amy K. Madl
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| |
Collapse
|
5
|
Sherwood CL, Daines MO, Price TJ, Vagner J, Boitano S. A highly potent agonist to protease-activated receptor-2 reveals apical activation of the airway epithelium resulting in Ca2+-regulated ion conductance. Am J Physiol Cell Physiol 2014; 307:C718-26. [PMID: 25143347 DOI: 10.1152/ajpcell.00257.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The airway epithelium provides a barrier that separates inhaled air and its various particulates from the underlying tissues. It provides key physiological functions in both sensing the environment and initiating appropriate innate immune defenses to protect the lung. Protease-activated receptor-2 (PAR2) is expressed both apically and basolaterally throughout the airway epithelium. One consequence of basolateral PAR2 activation is the rapid, Ca(2+)-dependent ion flux that favors secretion in the normally absorptive airway epithelium. However, roles for apically expressed PAR2 activation have not been demonstrated, in part due to the lack of specific, high-potency PAR2 ligands. In the present study, we used the newly developed PAR2 ligand 2at-LIGRLO(PEG3-Pam)-NH2 in combination with well-differentiated, primary cultured airway epithelial cells from wild-type and PAR2 (-/-) mice to examine the physiological role of PAR2 in the conducting airway after apical activation. Using digital imaging microscopy of intracellular Ca(2+) concentration changes, we verified ligand potency on PAR2 in primary cultured airway cells. Examination of airway epithelial tissue in an Ussing chamber showed that apical activation of PAR2 by 2at-LIGRLO(PEG3-Pam)-NH2 resulted in a transient decrease in transepithelial resistance that was due to increased apical ion efflux. We determined pharmacologically that this increase in ion conductance was through Ca(2+)-activated Cl(-) and large-conductance K(+) channels that were blocked with a Ca(2+)-activated Cl(-) channel inhibitor and clotrimazole, respectively. Stimulation of Cl(-) efflux via PAR2 activation at the airway epithelial surface can increase airway surface liquid that would aid in clearing the airway of noxious inhaled agents.
Collapse
Affiliation(s)
- Cara L Sherwood
- Arizona Respiratory Center, University of Arizona, Tucson, Arizona; The BIO5 Collaborative Research Institute, University of Arizona, Tucson, Arizona
| | - Michael O Daines
- Arizona Respiratory Center, University of Arizona, Tucson, Arizona; Department of Pediatrics, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona; The BIO5 Collaborative Research Institute, University of Arizona, Tucson, Arizona
| | - Theodore J Price
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona; and The BIO5 Collaborative Research Institute, University of Arizona, Tucson, Arizona
| | - Josef Vagner
- The BIO5 Collaborative Research Institute, University of Arizona, Tucson, Arizona
| | - Scott Boitano
- Arizona Respiratory Center, University of Arizona, Tucson, Arizona; Department of Physiology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona; The BIO5 Collaborative Research Institute, University of Arizona, Tucson, Arizona
| |
Collapse
|