1
|
Gaigher A, Rota A, Neves F, Muñoz-Mérida A, Blasco-Aróstegui J, Almeida T, Veríssimo A. Extensive MHC class IIβ diversity across multiple loci in the small-spotted catshark (Scyliorhinus canicula). Sci Rep 2023; 13:3837. [PMID: 36882519 PMCID: PMC9992475 DOI: 10.1038/s41598-023-30876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The major histocompatibility complex (MHC) is a multigene family responsible for pathogen detection, and initiation of adaptive immune responses. Duplication, natural selection, recombination, and their resulting high functional genetic diversity spread across several duplicated loci are the main hallmarks of the MHC. Although these features were described in several jawed vertebrate lineages, a detailed MHC IIβ characterization at the population level is still lacking for chondrichthyans (chimaeras, rays and sharks), i.e. the most basal lineage to possess an MHC-based adaptive immune system. We used the small-spotted catshark (Scyliorhinus canicula, Carcharhiniformes) as a case-study species to characterize MHC IIβ diversity using complementary molecular tools, including publicly available genome and transcriptome datasets, and a newly developed high-throughput Illumina sequencing protocol. We identified three MHC IIβ loci within the same genomic region, all of which are expressed in different tissues. Genetic screening of the exon 2 in 41 individuals of S. canicula from a single population revealed high levels of sequence diversity, evidence for positive selection, and footprints of recombination. Moreover, the results also suggest the presence of copy number variation in MHC IIβ genes. Thus, the small-spotted catshark exhibits characteristics of functional MHC IIβ genes typically observed in other jawed vertebrates.
Collapse
Affiliation(s)
- Arnaud Gaigher
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany.
| | - Alessia Rota
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fabiana Neves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Javier Blasco-Aróstegui
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Faculty of Sciences, University of Lisbon, Campo Grande 016, 1749-016, Lisbon, Portugal
| | - Tereza Almeida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
2
|
Almeida T, Gaigher A, Muñoz-Mérida A, Neves F, Castro LFC, Flajnik MF, Ohta Y, Esteves PJ, Veríssimo A. Cartilaginous fish class II genes reveal unprecedented old allelic lineages and confirm the late evolutionary emergence of DM. Mol Immunol 2020; 128:125-138. [PMID: 33126081 PMCID: PMC8010645 DOI: 10.1016/j.molimm.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Cartilaginous fish (chimaeras, rays and sharks) are the most basal extant jawed vertebrates with an adaptive immune system based on the Major Histocompatibility Complex (MHC). Despite being a key taxon in the evolution of vertebrate adaptive immunity, no comprehensive characterization of MHC class II genes has been undertaken for the group. We performed extensive bioinformatic searches on a taxonomically diverse dataset of transcriptomes and genomes of cartilaginous fish targeting MHC class II sequences. Class IIα and IIβ sequences were retrieved from all taxa analyzed and showed typical features of classical class II genes. Phylogenetic trees of the immunoglobulin superfamily domain showed two divergent and remarkably ancient lineages of class II genes in Selachians (sharks), originating >350 million years ago. Close linkage of lineage-specific pairs of IIα and IIβ genes was found, confirming previous results, with genes from distinct lineages segregating as alleles. Nonclassical class II DM sequences were not retrieved from these data and classical class II sequences lacked the conserved residues shown to interact with DM molecules, supporting claims that the DM system arose only in the lobe-finned fish lineage leading to tetrapods. Based on our search methods, other divergent class II genes are unlikely in cartilaginous fish.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Department of Biology, Faculty of Sciences - University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Arnaud Gaigher
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Fabiana Neves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - L Filipe C Castro
- Department of Biology, Faculty of Sciences - University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Pedro J Esteves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Department of Biology, Faculty of Sciences - University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
3
|
Ma Q, Su YQ, Wang J, Zhuang ZM, Tang QS. Molecular cloning and expression analysis of major histocompatibility complex class IIB gene of the Whitespotted bambooshark (Chiloscyllium plagiosum). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:131-142. [PMID: 22752338 DOI: 10.1007/s10695-012-9685-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
Major histocompatibility complex (MHC) plays an important role in the immune response to antigenic peptides in vertebrates. In this study, the full length of MHC IIB cDNA was isolated from the Whitespotted bambooshark (Chiloscyllium plagiosum) by homology cloning, and the rapid amplification of cDNA ends polymerase chain reaction. As a result, the MHC IIB cDNA is 1,407 bp, which contains an open reading frame (ORF) of 831 bp encoding a protein of 276 amino acids. Furthermore, seven alleles of the complete MHC IIB ORF were detected and the variable sites were mainly located in the immunoglobulin-like (β2) region. Tissue distribution analysis showed that MHC IIB can be detected in all the ten tissues examined, with the highest expression in the spleen and gill. Challenge of C. plagiosum with the pathogenic bacteria, Vibrio harveyi, resulted in significant changes in the expression of MHC IIB mRNA in the three immune-related tissues (gill, liver and spleen). These results show that the MHC IIB plays an important role in response to bacterial infection in elasmobranches.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory for Fishery Resources and Eco-environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | | | | | | | |
Collapse
|