He Q, Mitchell A, Morcol T, Bell SJD. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2.
CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002;
9:1021-4. [PMID:
12204953 PMCID:
PMC120054 DOI:
10.1128/cdli.9.5.1021-1024.2002]
[Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 03/15/2002] [Accepted: 05/06/2002] [Indexed: 11/20/2022]
Abstract
Previously we reported that calcium phosphate nanoparticles (CAP) represented a superior alternative to alum adjuvants in mice immunized with viral protein. Additionally, we showed that CAP was safe and elicited no detectable immunoglobulin E (IgE) response. In this study, we demonstrated that following mucosal delivery of herpes simplex virus type 2 (HSV-2) antigen with CAP, CAP adjuvant enhanced protective systemic and mucosal immunity versus live virus. Mice were immunized intravaginally and intranasally with HSV-2 protein plus CAP adjuvant (HSV-2+CAP), CAP alone, phosphate-buffered saline, or HSV-2 alone. HSV-2+CAP induced HSV-specific mucosal IgA and IgG and concurrently enhanced systemic IgG responses. Our results demonstrate the potency of CAP as a mucosal adjuvant. Furthermore, we show that systemic immunity could be induced via the mucosal route following inoculation with CAP-based vaccine. Moreover, neutralizing antibodies were found in the sera of mice immunized intranasally or intravaginally with HSV-2+CAP. Also, the results of our in vivo experiments indicated that mice vaccinated with HSV-2+CAP were protected against live HSV-2 infection. In conclusion, these preclinical data support the hypothesis that CAP may be an effective mucosal adjuvant that protects against viral infection.
Collapse