1
|
White C, Scott RJ, Paul C, Ziolkowski A, Mossman D, Fox SB, Michael M, Ackland S. Dihydropyrimidine Dehydrogenase Deficiency and Implementation of Upfront DPYD Genotyping. Clin Pharmacol Ther 2022; 112:791-802. [PMID: 35607723 DOI: 10.1002/cpt.2667] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Fluoropyrimidines (FP; 5-fluorouracil, capecitabine, and tegafur) are a commonly prescribed class of antimetabolite chemotherapies, used for various solid organ malignancies in over 2 million patients globally per annum. Dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is the critical enzyme implicated in FP metabolism. DPYD variant genotypes can result in decreased DPD production, leading to the development of severe toxicities resulting in hospitalization, intensive care admission, and even death. Management of toxicity incurs financial burden on both patients and healthcare systems alike. Upfront DPYD genotyping to identify variant carriers allows an opportunity to identify patients who are at high risk to suffer from serious toxicities and allow prospective dose adjustment of FP treatment. This approach has been shown to reduce patient morbidity, as well as improve the cost-effectiveness of managing FP treatment. Upfront DPYD genotyping has been recently endorsed by several countries in Europe and the United Kingdom. This review summarizes current knowledge about DPD deficiency and upfront DPYD genotyping, including clinical and cost-effectiveness outcomes, with the intent of supporting implementation of an upfront DPYD genotyping service with individualized dose-personalization.
Collapse
Affiliation(s)
- Cassandra White
- School of Medicine and Public Health, University of Newcastle, College of Health, Medicine and Wellbeing, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,School of Biomedical Science and Pharmacy, University of Newcastle, College of Health, Medicine and Wellbeing, Callaghan, New South Wales, Australia.,Department of Molecular Genetics, Pathology North John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Christine Paul
- School of Medicine and Public Health, University of Newcastle, College of Health, Medicine and Wellbeing, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Andrew Ziolkowski
- Department of Molecular Genetics, Pathology North John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - David Mossman
- Department of Molecular Genetics, Pathology North John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Michael
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen Ackland
- School of Medicine and Public Health, University of Newcastle, College of Health, Medicine and Wellbeing, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Hunter Cancer Centre, Lake Macquarie Private Hospital, Gateshead, New South Wales, Australia
| |
Collapse
|
2
|
Knikman JE, Gelderblom H, Beijnen JH, Cats A, Guchelaar H, Henricks LM. Individualized Dosing of Fluoropyrimidine-Based Chemotherapy to Prevent Severe Fluoropyrimidine-Related Toxicity: What Are the Options? Clin Pharmacol Ther 2021; 109:591-604. [PMID: 33020924 PMCID: PMC7983939 DOI: 10.1002/cpt.2069] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Fluoropyrimidines are widely used in the treatment of several types of solid tumors. Although most often well tolerated, severe toxicity is encountered in ~ 20-30% of the patients. Individualized dosing for these patients can reduce the incidence of severe fluoropyrimidine-related toxicity. However, no consensus has been achieved on which dosing strategy is preferred. The most established strategy for individualized dosing of fluoropyrimidines is upfront genotyping of the DPYD gene. Prospective research has shown that DPYD-guided dose-individualization significantly reduces the incidence of severe toxicity and can be easily applied in routine daily practice. Furthermore, the measurement of the dihydropyrimidine dehydrogenase (DPD) enzyme activity has shown to accurately detect patients with a DPD deficiency. Yet, because this assay is time-consuming and expensive, it is not widely implemented in routine clinical care. Other methods include the measurement of pretreatment endogenous serum uracil concentrations, the uracil/dihydrouracil-ratio, and the 5-fluorouracil (5-FU) degradation rate. These methods have shown mixed results. Next to these methods to detect DPD deficiency, pharmacokinetically guided follow-up of 5-FU could potentially be used as an addition to dosing strategies to further improve the safety of fluoropyrimidines. Furthermore, baseline characteristics, such as sex, age, body composition, and renal function have shown to have a relationship with the development of severe toxicity. Therefore, these baseline characteristics should be considered as a dose-individualization strategy. We present an overview of the current dose-individualization strategies and provide perspectives for a future multiparametric approach.
Collapse
Affiliation(s)
- Jonathan E. Knikman
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hans Gelderblom
- Department of Clinical OncologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jos H. Beijnen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Annemieke Cats
- Department of Gastroenterology and HepatologyDivision of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Linda M. Henricks
- Department of Clinical Chemistry and Laboratory MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|