1
|
Impaired Cytokine Responses to Epstein-Barr Virus Antigens in Systemic Lupus Erythematosus Patients. J Immunol Res 2016; 2016:6473204. [PMID: 27110576 PMCID: PMC4826706 DOI: 10.1155/2016/6473204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/06/2016] [Indexed: 01/05/2023] Open
Abstract
We analyzed cytokine responses against latent and lytic Epstein-Barr virus (EBV) antigens in systemic lupus erythematosus (SLE) patients and healthy controls (HCs) to obtain an overview of the distinctive immune regulatory response in SLE patients and to expand the previously determined impaired EBV-directed T-cell response. The concentrations of 14 cytokines (IL2, IL4, IL5, IL6, IL10, IL12, IL17, IL18, IL1β, IFNγ, TNFα, TNFβ, TGFβ, and GM-CSF) were quantified upon stimulation of whole blood with latent state antigen EBNA1, lytic cycle antigen EBV-EA/D, and the superantigen SEB. To avoid results affected by lack of lymphocytes, we focused on SLE patients with normal levels. Decreased induction of IL12, IFNγ, IL17, and IL6 upon EBNA1 stimulation and that of IFNγ, IL6, TNFβ, IL1β, and GM-CSF upon EBV-EA/D stimulation were detected in SLE patients compared to HCs. IFNγ responses, especially, were shown to be reduced. Induction of several cytokines was furthermore impaired in SLE patients upon SEB stimulation, but no difference was observed in basic levels. Results substantiate the previously proposed impaired regulation of the immune response against latent and lytic cycle EBV infection in SLE patients without lymphopenia. Furthermore, results indicate general dysfunction of leukocytes and their cytokine regulations in SLE patients.
Collapse
|
2
|
Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016; 22:146-53. [PMID: 26779811 PMCID: PMC4742415 DOI: 10.1038/nm.4027] [Citation(s) in RCA: 1098] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022]
Abstract
Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.
Collapse
Affiliation(s)
- Christian Lood
- Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Luz P Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Monica M Purmalek
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Suk S De Ravin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carolyne K Smith
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jeffrey A Ledbetter
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
3
|
Biswas PS, Aggarwal R, Levesque MC, Maers K, Ramani K. Type I interferon and T helper 17 cells co-exist and co-regulate disease pathogenesis in lupus patients. Int J Rheum Dis 2015; 18:646-53. [DOI: 10.1111/1756-185x.12636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Partha S. Biswas
- Division of Rheumatology and Clinical Immunology; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Marc C. Levesque
- Division of Rheumatology and Clinical Immunology; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Kelly Maers
- Division of Rheumatology and Clinical Immunology; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Kritika Ramani
- Division of Rheumatology and Clinical Immunology; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
4
|
Dey-Rao R, Sinha AA. Genome-wide transcriptional profiling of chronic cutaneous lupus erythematosus (CCLE) peripheral blood identifies systemic alterations relevant to the skin manifestation. Genomics 2014; 105:90-100. [PMID: 25451738 DOI: 10.1016/j.ygeno.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
Major gaps remain regarding pathogenetic mechanisms underlying clinical heterogeneity in lupus erythematosus (LE). As systemic changes are likely to underlie skin specific manifestation, we analyzed global gene expression in peripheral blood of a small cohort of chronic cutaneous LE (CCLE) patients and healthy individuals. Unbiased hierarchical clustering distinguished patients from controls revealing a "disease" based signature. Functional annotation of the differentially expressed genes (DEGs) highlight enrichment of interferon related immune response and apoptosis signatures, along with other key pathways. There is a 26% overlap of the blood and lesional skin transcriptional profile from a previous analysis by our group. We identified four transcriptional "hot spots" at chromosomal regions harboring statistically increased numbers of DEGs which offer prioritized potential loci for downstream fine mapping studies in the search for CCLE specific susceptibility loci. Additionally, we uncover evidence to support both shared and distinct mechanisms for cutaneous and systemic manifestations of lupus.
Collapse
Affiliation(s)
- R Dey-Rao
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA
| | - A A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|