1
|
Zhang M, Liao J, Zhang Z, Shi H, Wu J, Huang W, Li C, Song L, Yu R, Zhu J. Structural characterization of two novel heteropolysaccharides from Catharanthus roseus and the evaluation of their immunological activities. Carbohydr Polym 2025; 348:122896. [PMID: 39567132 DOI: 10.1016/j.carbpol.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Catharanthus roseus, a plant with significant therapeutic value in Chinese folk medicine, contain numerous secondary metabolites. However, the primary metabolites, specifically polysaccharides which might play an important role in immunotherapy, have received limited attention. In the present study, two novel polysaccharides, designated as CRPS-1 and CRPS-2, were isolated from C. roseus. The structures of CRPS-1 and CRPS-2 were characterized using a combination of HPSEC, HPLC, IR, GC-MS, 1D NMR and 2D NMR. Both CRPS-1 and CRPS-2 were identified as homogeneous heteropolysaccharides. Additionally, the weight-average molecular weight of CRPS-2 was lower than that of CRPS-1. The backbone of CRPS-1 was composed of 1,3-α-L-Araf, 1,5-α-L-Araf, 1,3,5-α-L-Araf, 1,3,4-α-L-Rhap, 1,3-α-D-Galp, 1,3,4-α-D-Galp, 1,4-β-D-Manp, and side chains comprised of T-α-L-Araf, T-β-D-Manp, and β-D-Glcp-(1 → 3)-α-D-Galp-(1 → 3) -α-L-Rhap-(1→. CRPS-2 mainly consisted of 1,3-α-D-Galp, 1,3,4-α-D-Galp, 1,6-β-D-Manp, 1,5-α-L-Araf, 1,3,5-α-L-Araf, 1,3-α-L-Rhap and 1,3,4-α-L-Fucp with complex branching structures. Furthermore, CRPS-2 could significantly enhance proliferation and phagocytosis, as well as the secretion of cytokines in RAW264.7 cells. It demonstrated potent immunoregulatory activity by activating the MAPK/Akt/NF-κB signaling pathways. In summary, the utilization of galactose-enriched and low-molecular-weight polysaccharides exhibits great potential in the advancement of innovative functional foods that may provide health benefits.
Collapse
Affiliation(s)
- Man Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jiapei Liao
- Department of Natural Medicinal Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hui Shi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jixu Wu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chunlei Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Medicinal Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Shenzhen Center for Chromic Disease Control, 2021 Buxin Road, Shenzhen 518020, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Medicinal Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
2
|
Wang L, Yu X, Wu C, Zhu T, Wang W, Zheng X, Jin H. RNA sequencing-based longitudinal transcriptomic profiling gives novel insights into the disease mechanism of generalized pustular psoriasis. BMC Med Genomics 2018; 11:52. [PMID: 29871627 PMCID: PMC5989375 DOI: 10.1186/s12920-018-0369-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background Generalized pustular psoriasis (GPP) is a rare, episodic, potentially life-threatening inflammatory disease. However, the pathogenesis of GPP, and universally accepted therapies for treating it, remain undefined. Methods To better understand the disease mechanism of GPP, we performed a transcriptome analysis to profile the gene expression of peripheral blood mononuclear cells (PBMCs) from patients enrolled at the time of diagnosis and receiving follow-up treatment for up to 6 months. Results RNA sequencing data revealed that gene expression in five GPP patients’ PBMCs was profoundly altered following acitretin treatment. Differentially expressed gene (DEG) analysis suggested that genes related to psoriatic inflammation, including CXCL1, CXCL8 (IL-8), S100A8, S100A9, S100A12 and LCN2, were significantly downregulated in patients in remission from GPP. Functional enrichment and annotation analysis unveiled a cluster of DEGs significantly associated with the function of leukocytes, particularly neutrophils. Pathway analysis suggested that a variety of pro-inflammatory pathways were inhibited in patients in remission. This analysis not only reaffirmed known signaling pathways in GPP pathogenesis, but also implicated novel factors and pathways, such as cell cycle regulation pathways. Furthermore, regulator network analysis provided bioinformatics-based support for upstream molecules as potential therapeutic targets such as oncostatin M. Conclusions This longitudinal analysis of blood transcriptomes provides the first evidence that dysregulated gene expression in peripheral blood may significantly contribute to psoriatic inflammation in GPP patients. Novel canonical pathways and biomarkers identified in the current research may provide insights to help understand GPP pathobiology and advance novel therapeutics. Electronic supplementary material The online version of this article (10.1186/s12920-018-0369-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoling Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Wu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Teng Zhu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenming Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongzhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|