1
|
Hammes-Schiffer S. Exploring Proton-Coupled Electron Transfer at Multiple Scales. NATURE COMPUTATIONAL SCIENCE 2023; 3:291-300. [PMID: 37577057 PMCID: PMC10416817 DOI: 10.1038/s43588-023-00422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 08/15/2023]
Abstract
The coupling of electron and proton transfer is critical for chemical and biological processes spanning a wide range of length and time scales and often occurring in complex environments. Thus, diverse modeling strategies, including analytical theories, quantum chemistry, molecular dynamics, and kinetic modeling, are essential for a comprehensive understanding of such proton-coupled electron transfer reactions. Each of these computational methods provides one piece of the puzzle, and all these pieces must be viewed together to produce the full picture.
Collapse
|
2
|
Mazzeo P, Hashem S, Lipparini F, Cupellini L, Mennucci B. Fast Method for Excited-State Dynamics in Complex Systems and Its Application to the Photoactivation of a Blue Light Using Flavin Photoreceptor. J Phys Chem Lett 2023; 14:1222-1229. [PMID: 36716231 PMCID: PMC9923743 DOI: 10.1021/acs.jpclett.2c03797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The excited-state dynamics of molecules embedded in complex (bio)matrices is still a challenging goal for quantum chemical models. Hybrid QM/MM models have proven to be an effective strategy, but an optimal combination of accuracy and computational cost still has to be found. Here, we present a method which combines the accuracy of a polarizable embedding QM/MM approach with the computational efficiency of an excited-state self-consistent field method. The newly implemented method is applied to the photoactivation of the blue-light-using flavin (BLUF) domain of the AppA protein. We show that the proton-coupled electron transfer (PCET) process suggested for other BLUF proteins is still valid also for AppA.
Collapse
|
3
|
Hontani Y, Mehlhorn J, Domratcheva T, Beck S, Kloz M, Hegemann P, Mathes T, Kennis JTM. Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J Am Chem Soc 2023; 145:1040-1052. [PMID: 36607126 PMCID: PMC9853863 DOI: 10.1021/jacs.2c10621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Blue light sensing using flavin (BLUF) domains constitute a family of flavin-binding photoreceptors of bacteria and eukaryotic algae. BLUF photoactivation proceeds via a light-driven hydrogen-bond switch among flavin adenine dinucleotide (FAD) and glutamine and tyrosine side chains, whereby FAD undergoes electron and proton transfer with tyrosine and is subsequently re-oxidized by a hydrogen back-shuttle in picoseconds, constituting an important model system to understand proton-coupled electron transfer in biology. The specific structure of the hydrogen-bond patterns and the prevalence of glutamine tautomeric states in dark-adapted (DA) and light-activated (LA) states have remained controversial. Here, we present a combined femtosecond stimulated Raman spectroscopy (FSRS), computational chemistry, and site-selective isotope labeling Fourier-transform infrared spectroscopy (FTIR) study of the Slr1694 BLUF domain. FSRS showed distinct vibrational bands from the FADS1 singlet excited state. We observed small but significant shifts in the excited-state vibrational frequency patterns of the DA and LA states, indicating that these frequencies constitute a sensitive probe for the hydrogen-bond arrangement around FAD. Excited-state model calculations utilizing four different realizations of hydrogen bond patterns and glutamine tautomeric states were consistent with a BLUF reaction model that involved glutamine tautomerization to imidic acid, accompanied by a rotation of its side chain. A combined FTIR and double-isotope labeling study, with 13C labeling of FAD and 15N labeling of glutamine, identified the glutamine imidic acid C═N stretch vibration in the LA state and the Gln C═O in the DA state. Hence, our study provides support for glutamine tautomerization and side-chain rotation in the BLUF photoreaction.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands
| | - Jennifer Mehlhorn
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tatiana Domratcheva
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany,Department
of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sebastian Beck
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institute
of Physics, ELI-Beamlines, Na Slovance 2, 182
21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tilo Mathes
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,
| |
Collapse
|
4
|
Tolentino Collado J, Iuliano JN, Pirisi K, Jewlikar S, Adamczyk K, Greetham GM, Towrie M, Tame JRH, Meech SR, Tonge PJ, Lukacs A. Unraveling the Photoactivation Mechanism of a Light-Activated Adenylyl Cyclase Using Ultrafast Spectroscopy Coupled with Unnatural Amino Acid Mutagenesis. ACS Chem Biol 2022; 17:2643-2654. [PMID: 36038143 PMCID: PMC9486806 DOI: 10.1021/acschembio.2c00575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hydrogen bonding network that surrounds the flavin in blue light using flavin adenine dinucleotide (BLUF) photoreceptors plays a crucial role in sensing and communicating the changes in the electronic structure of the flavin to the protein matrix upon light absorption. Using time-resolved infrared spectroscopy (TRIR) and unnatural amino acid incorporation, we investigated the photoactivation mechanism and the role of the conserved tyrosine (Y6) in the forward reaction of the photoactivated adenylyl cyclase from Oscillatoria acuminata (OaPAC). Our work elucidates the direct connection between BLUF photoactivation and the structural and functional implications on the partner protein for the first time. The TRIR results demonstrate the formation of the neutral flavin radical as an intermediate species on the photoactivation pathway which decays to form the signaling state. Using fluorotyrosine analogues to modulate the physical properties of Y6, the TRIR data reveal that a change in the pKa and/or reduction potential of Y6 has a profound effect on the forward reaction, consistent with a mechanism involving proton transfer or proton-coupled electron transfer from Y6 to the electronically excited FAD. Decreasing the pKa from 9.9 to <7.2 and/or increasing the reduction potential by 200 mV of Y6 prevents proton transfer to the flavin and halts the photocycle at FAD•-. The lack of protonation of the anionic flavin radical can be directly linked to photoactivation of the adenylyl cyclase (AC) domain. While the 3F-Y6 and 2,3-F2Y6 variants undergo the complete photocycle and catalyze the conversion of ATP into cAMP, enzyme activity is abolished in the 3,5-F2Y6 and 2,3,5-F3Y6 variants where the photocycle is halted at FAD•-. Our results thus show that proton transfer plays an essential role in initiating the structural reorganization of the AC domain that results in AC activity.
Collapse
Affiliation(s)
| | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States
| | - Katalin Pirisi
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti Street 12, Pecs 7624, Hungary
| | - Samruddhi Jewlikar
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States
| | - Katrin Adamczyk
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Jeremy R. H. Tame
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.,
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States,
| | - Andras Lukacs
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti Street 12, Pecs 7624, Hungary,
| |
Collapse
|
5
|
Photochemical processes in flavo-enzymes as a probe for active site dynamics: TrmFO of Thermus thermophilus. Photochem Photobiol Sci 2021; 20:663-670. [PMID: 33977512 DOI: 10.1007/s43630-021-00052-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Quenching of flavin fluorescence by electron transfer from neighboring aromatic residues is ubiquitous in flavoproteins. Apart from constituting a functional process in specific light-active systems, time-resolved spectral characterization of the process can more generally be employed as a probe for the active site configuration and dynamics. In the C51A variant of the bacterial RNA-transforming flavoenzyme TrmFO from the bacterium Thermus thermophilus, fluorescence is very short-lived (~ 1 ps), and close-by Tyr343 is known to act as the main quencher, as confirmed here by the very similar dynamics observed in protein variants with modified other potential quenchers, Trp283 and Trp214. When Tyr343 is modified to redox-inactive phenylalanine, slower and highly multiphasic kinetics are observed on the picosecond-nanosecond timescale, reflecting heterogeneous electron donor-acceptor configurations. We demonstrate that Trp214, which is located on a potentially functional flexible loop, contributes to electron donor quenching in this variant. Contrasting with observations in other nucleic acid-transforming enzymes, these kinetics are strikingly temperature-independent. This indicates (a) near-barrierless electron transfer reactions and (b) no exchange between different configurations on the timescale up to at least 2 ns, despite the presumed flexibility of Trp214. Results of extensive molecular dynamics simulations are presented to explain this unexpected finding in terms of slowly exchanging protein configurations.
Collapse
|
6
|
Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proc Natl Acad Sci U S A 2020; 117:26626-26632. [PMID: 33037153 DOI: 10.1073/pnas.2016719117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Blue light using flavin (BLUF) photoreceptor proteins are critical for many light-activated biological processes and are promising candidates for optogenetics because of their modular nature and long-range signaling capabilities. Although the photocycle of the Slr1694 BLUF domain has been characterized experimentally, the identity of the light-adapted state following photoexcitation of the bound flavin remains elusive. Herein hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations of this photocycle provide a nonequilibrium dynamical picture of a possible mechanism for the formation of the light-adapted state. Photoexcitation of the flavin induces a forward proton-coupled electron transfer (PCET) process that leads to the formation of an imidic acid tautomer of Gln50. The calculations herein show that the subsequent rotation of Gln50 allows a reverse PCET process that retains this tautomeric form. In the resulting purported light-adapted state, the glutamine tautomer forms a hydrogen bond with the flavin carbonyl group. Additional ensemble-averaged QM/MM calculations of the dark-adapted and purported light-adapted states demonstrate that the light-adapted state with the imidic acid glutamine tautomer reproduces the experimentally observed spectroscopic signatures. Specifically, the calculations reproduce the red shifts in the flavin electronic absorption and carbonyl stretch infrared spectra in the light-adapted state. Further hydrogen-bonding analyses suggest the formation of hydrogen-bonding interactions between the flavin and Arg65 in the light-adapted state, providing a plausible explanation for the experimental observation of faster photoinduced PCET in this state. These characteristics of the light-adapted state may also be essential for the long-range signaling capabilities of this photoreceptor protein.
Collapse
|
7
|
Goings JJ, Hammes-Schiffer S. Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics. J Am Chem Soc 2019; 141:20470-20479. [DOI: 10.1021/jacs.9b11196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua J. Goings
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
8
|
de Wergifosse M, Grimme S. Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra. J Chem Phys 2019; 150:094112. [DOI: 10.1063/1.5080199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
9
|
Zayner JP, Mathes T, Sosnick TR, Kennis JTM. Helical Contributions Mediate Light-Activated Conformational Change in the LOV2 Domain of Avena sativa Phototropin 1. ACS OMEGA 2019; 4:1238-1243. [PMID: 31459397 PMCID: PMC6648828 DOI: 10.1021/acsomega.8b02872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 06/10/2023]
Abstract
Algae, plants, bacteria, and fungi contain flavin-binding light-oxygen-voltage (LOV) domains that function as blue light sensors to control cellular responses to light. In the second LOV domain of phototropins, called LOV2 domains, blue light illumination leads to covalent bond formation between protein and flavin that induces the dissociation and unfolding of a C-terminally attached α helix (Jα) and the N-terminal helix (A'α). To date, the majority of studies on these domains have focused on versions that contain truncations in the termini, which creates difficulties when extrapolating to the much larger proteins that contain these domains. Here, we study the influence of deletions and extensions of the A'α helix of the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) on the light-triggered structural response of the protein by Fourier-transform infrared difference spectroscopy. Deletion of the A'α helix abolishes the light-induced unfolding of Jα, whereas extensions of the A'α helix lead to an attenuated structural change of Jα. These results are different from shorter constructs, indicating that the conformational changes in full-length phototropin LOV domains might not be as large as previously assumed, and that the well-characterized full unfolding of the Jα helix in AsLOV2 with short A'α helices may be considered a truncation artifact. It also suggests that the N- and C-terminal helices of phot-LOV2 domains are necessary for allosteric regulation of the phototropin kinase domain and may provide a basis for signal integration of LOV1 and LOV2 domains in phototropins.
Collapse
Affiliation(s)
- Josiah P. Zayner
- Department of Biochemistry
and Molecular Biology, The University of
Chicago, Chicago 60637, United States
| | - Tilo Mathes
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Tobin R. Sosnick
- Department of Biochemistry
and Molecular Biology, The University of
Chicago, Chicago 60637, United States
- Institute
for Biophysical Dynamics, The University
of Chicago, Chicago, Illinois 60637 United States
| | - John T. M. Kennis
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Goings JJ, Reinhardt CR, Hammes-Schiffer S. Propensity for Proton Relay and Electrostatic Impact of Protein Reorganization in Slr1694 BLUF Photoreceptor. J Am Chem Soc 2018; 140:15241-15251. [DOI: 10.1021/jacs.8b07456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Joshua J. Goings
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Clorice R. Reinhardt
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Abstract
Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.
Collapse
|
12
|
Zhu J, Mathes T, Hontani Y, Alexandre MTA, Toh KC, Hegemann P, Kennis JTM. Photoadduct Formation from the FMN Singlet Excited State in the LOV2 Domain of Chlamydomonas reinhardtii Phototropin. J Phys Chem Lett 2016; 7:4380-4384. [PMID: 27766868 DOI: 10.1021/acs.jpclett.6b02075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The two light, oxygen, and voltage domains of phototropin are blue-light photoreceptor domains that control various functions in plants and green algae. The key step of the light-driven reaction is the formation of a photoadduct between its FMN chromophore and a conserved cysteine, where the canonical reaction proceeds through the FMN triplet state. Here, complete photoreaction mapping of CrLOV2 from Chlamydomonas reinhardtii phototropin and AsLOV2 from Avena sativa phototropin-1 was realized by ultrafast broadband spectroscopy from femtoseconds to microseconds. We demonstrate that in CrLOV2, a direct photoadduct formation channel originates from the initially excited singlet state, in addition to the canonical reaction through the triplet state. This direct photoadduct reaction is coupled by a proton or hydrogen transfer process, as indicated by a significant kinetic isotope effect of 1.4 on the fluorescence lifetime. Kinetic model analyses showed that 38% of the photoadducts are generated from the singlet excited state.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit , 1081 De Boelelaan, 1081 HV Amsterdam, The Netherlands
| | - Tilo Mathes
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit , 1081 De Boelelaan, 1081 HV Amsterdam, The Netherlands
| | - Yusaku Hontani
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit , 1081 De Boelelaan, 1081 HV Amsterdam, The Netherlands
| | - Maxime T A Alexandre
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit , 1081 De Boelelaan, 1081 HV Amsterdam, The Netherlands
| | - K C Toh
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit , 1081 De Boelelaan, 1081 HV Amsterdam, The Netherlands
| | - Peter Hegemann
- Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Invalidenstraße 42, 10115 Berlin, Germany
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit , 1081 De Boelelaan, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Fudim R, Mehlhorn J, Berthold T, Weber S, Schleicher E, Kennis JTM, Mathes T. Photoinduced formation of flavin radicals in BLUF domains lacking the central glutamine. FEBS J 2015; 282:3161-74. [DOI: 10.1111/febs.13297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Roman Fudim
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
| | - Jennifer Mehlhorn
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
| | - Thomas Berthold
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
| | - Stefan Weber
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS); Albert-Ludwigs-Universität Freiburg; Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
- Inorganic Chemistry Laboratory; University of Oxford; UK
| | - John T. M. Kennis
- Biophysics Section; Department of Physics and Astronomy; Faculty of Sciences; VU University; Amsterdam The Netherlands
| | - Tilo Mathes
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
- Biophysics Section; Department of Physics and Astronomy; Faculty of Sciences; VU University; Amsterdam The Netherlands
| |
Collapse
|