1
|
Phosphorylation of eIF4E in the stroma drives the production and spatial organisation of collagen type I in the mammary gland. Matrix Biol 2022; 111:264-288. [PMID: 35842012 DOI: 10.1016/j.matbio.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) plays critical roles in breast cancer development. Whether ECM composition is regulated by the phosphorylation of eIF4E on serine 209, an event required for tumorigenesis, has not been explored. Herein, we used proteomics and mouse modelling to investigate the impact of mutating serine 209 to alanine on eIF4E (i.e., S209A) on mammary gland (MG) ECM. The proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD028953. We discovered that S209A knock-in mice, expressing a non-phosphorylatable form of eIF4E, have less collagen-I deposition in native and tumor-bearing MGs, leading to altered tumor cell invasion. Additionally, phospho-eIF4E-deficiency impacts collagen topology; fibers at the tumor-stroma boundary in phospho-eIF4E-deficient mice run parallel to the tumor edge but radiate outwards in wild-type mice. Finally, a phospho-eIF4E-deficient tumor microenvironment resists anti-PD-1 therapy-induced collagen deposition, correlating with an increased anti-tumor response to immunotherapy. Clinically, we showed that collagen-I and phospho-eIF4E are positively correlated in human breast cancer samples, and that stromal phospho-eIF4E expression is influenced by tumor proximity. Together, our work defines the importance of phosphorylation of eIF4E on S209 as a regulator of MG collagen architecture in the tumor microenvironment, thereby positioning phospho-eIF4E as a therapeutic target to augment response to therapy.
Collapse
|
2
|
Shevchuk O, Begonja AJ, Gambaryan S, Totzeck M, Rassaf T, Huber TB, Greinacher A, Renne T, Sickmann A. Proteomics: A Tool to Study Platelet Function. Int J Mol Sci 2021; 22:ijms22094776. [PMID: 33946341 PMCID: PMC8125008 DOI: 10.3390/ijms22094776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Platelets are components of the blood that are highly reactive, and they quickly respond to multiple physiological and pathophysiological processes. In the last decade, it became clear that platelets are the key components of circulation, linking hemostasis, innate, and acquired immunity. Protein composition, localization, and activity are crucial for platelet function and regulation. The current state of mass spectrometry-based proteomics has tremendous potential to identify and quantify thousands of proteins from a minimal amount of material, unravel multiple post-translational modifications, and monitor platelet activity during drug treatments. This review focuses on the role of proteomics in understanding the molecular basics of the classical and newly emerging functions of platelets. including the recently described role of platelets in immunology and the development of COVID-19.The state-of-the-art proteomic technologies and their application in studying platelet biogenesis, signaling, and storage are described, and the potential of newly appeared trapped ion mobility spectrometry (TIMS) is highlighted. Additionally, implementing proteomic methods in platelet transfusion medicine, and as a diagnostic and prognostic tool, is discussed.
Collapse
Affiliation(s)
- Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Correspondence: (O.S.); (A.S.)
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez pr. 44, 194223 St. Petersburg, Russia;
| | - Matthias Totzeck
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tienush Rassaf
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany;
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Medizinisches Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Correspondence: (O.S.); (A.S.)
| |
Collapse
|
3
|
Impaired iloprost-induced platelet inhibition and phosphoproteome changes in patients with confirmed pseudohypoparathyroidism type Ia, linked to genetic mutations in GNAS. Sci Rep 2020; 10:11389. [PMID: 32647264 PMCID: PMC7347634 DOI: 10.1038/s41598-020-68379-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
Patients diagnosed with pseudohypoparathyroidism type Ia (PHP Ia) suffer from hormonal resistance and abnormal postural features, in a condition classified as Albright hereditary osteodystrophy (AHO) syndrome. This syndrome is linked to a maternally inherited mutation in the GNAS complex locus, encoding for the GTPase subunit Gsα. Here, we investigated how platelet phenotype and omics analysis can assist in the often difficult diagnosis. By coupling to the IP receptor, Gsα induces platelet inhibition via adenylyl cyclase and cAMP-dependent protein kinase A (PKA). In platelets from seven patients with suspected AHO, one of the largest cohorts examined, we studied the PKA-induced phenotypic changes. Five patients with a confirmed GNAS mutation, displayed impairments in Gsα-dependent VASP phosphorylation, aggregation, and microfluidic thrombus formation. Analysis of the platelet phosphoproteome revealed 2,516 phosphorylation sites, of which 453 were regulated by Gsα-PKA. Common changes in the patients were: (1) a joint panel of upregulated and downregulated phosphopeptides; (2) overall PKA dependency of the upregulated phosphopeptides; (3) links to key platelet function pathways. In one patient with GNAS mutation, diagnosed as non-AHO, the changes in platelet phosphoproteome were reversed. This combined approach thus revealed multiple phenotypic and molecular biomarkers to assist in the diagnosis of suspected PHP Ia.
Collapse
|
4
|
Mnatsakanyan R, Shema G, Basik M, Batist G, Borchers CH, Sickmann A, Zahedi RP. Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev Proteomics 2019; 15:515-535. [PMID: 29893147 DOI: 10.1080/14789450.2018.1483340] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Numerous diseases are caused by changes in post-translational modifications (PTMs). Therefore, the number of clinical proteomics studies that include the analysis of PTMs is increasing. Combining complementary information-for example changes in protein abundance, PTM levels, with the genome and transcriptome (proteogenomics)-holds great promise for discovering important drivers and markers of disease, as variations in copy number, expression levels, or mutations without spatial/functional/isoform information is often insufficient or even misleading. Areas covered: We discuss general considerations, requirements, pitfalls, and future perspectives in applying PTM-centric proteomics to clinical samples. This includes samples obtained from a human subject, for instance (i) bodily fluids such as plasma, urine, or cerebrospinal fluid, (ii) primary cells such as reproductive cells, blood cells, and (iii) tissue samples/biopsies. Expert commentary: PTM-centric discovery proteomics can substantially contribute to the understanding of disease mechanisms by identifying signatures with potential diagnostic or even therapeutic relevance but may require coordinated efforts of interdisciplinary and eventually multi-national consortia, such as initiated in the cancer moonshot program. Additionally, robust and standardized mass spectrometry (MS) assays-particularly targeted MS, MALDI imaging, and immuno-MALDI-may be transferred to the clinic to improve patient stratification for precision medicine, and guide therapies.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany
| | - Gerta Shema
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany
| | - Mark Basik
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada
| | - Gerald Batist
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada
| | - Christoph H Borchers
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada.,c University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria , Victoria , British Columbia V8Z 7X8 , Canada.,d Department of Biochemistry and Microbiology , University of Victoria , Victoria , British Columbia , V8P 5C2 , Canada.,e Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal , Quebec H3T 1E2 , Canada
| | - Albert Sickmann
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany.,f Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum , 44801 Bochum , Germany.,g Department of Chemistry , College of Physical Sciences, University of Aberdeen , Aberdeen AB24 3FX , Scotland , United Kingdom
| | - René P Zahedi
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany.,b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada.,e Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal , Quebec H3T 1E2 , Canada
| |
Collapse
|
5
|
Rodrigues RM, Kollipara L, Chaudhari U, Sachinidis A, Zahedi RP, Sickmann A, Kopp-Schneider A, Jiang X, Keun H, Hengstler J, Oorts M, Annaert P, Hoeben E, Gijbels E, De Kock J, Vanhaecke T, Rogiers V, Vinken M. Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol 2018; 92:1939-1952. [PMID: 29761207 DOI: 10.1007/s00204-018-2214-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/26/2018] [Indexed: 11/24/2022]
Abstract
Bosentan is well known to induce cholestatic liver toxicity in humans. The present study was set up to characterize the hepatotoxic effects of this drug at the transcriptomic, proteomic, and metabolomic levels. For this purpose, human hepatoma-derived HepaRG cells were exposed to a number of concentrations of bosentan during different periods of time. Bosentan was found to functionally and transcriptionally suppress the bile salt export pump as well as to alter bile acid levels. Pathway analysis of both transcriptomics and proteomics data identified cholestasis as a major toxicological event. Transcriptomics results further showed several gene changes related to the activation of the nuclear farnesoid X receptor. Induction of oxidative stress and inflammation were also observed. Metabolomics analysis indicated changes in the abundance of specific endogenous metabolites related to mitochondrial impairment. The outcome of this study may assist in the further optimization of adverse outcome pathway constructs that mechanistically describe the processes involved in cholestatic liver injury.
Collapse
Affiliation(s)
- Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | | | - Umesh Chaudhari
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | | | - Xiaoqi Jiang
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Hector Keun
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund, Dortmund, Germany
| | - Marlies Oorts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
6
|
Shema G, Nguyen MTN, Solari FA, Loroch S, Venne AS, Kollipara L, Sickmann A, Verhelst SHL, Zahedi RP. Simple, scalable, and ultrasensitive tip-based identification of protease substrates. Mol Cell Proteomics 2018; 17:826-834. [PMID: 29358340 DOI: 10.1074/mcp.tir117.000302] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/15/2018] [Indexed: 11/06/2022] Open
Abstract
Proteases are in the center of many diseases, and consequently, proteases and their substrates are important drug targets as represented by an estimated 5-10% of all drugs under development. Mass spectrometry has been an indispensable tool for the discovery of novel protease substrates, particularly through the proteome-scale enrichment of so-called N-terminal peptides representing endogenous protein N termini. Methods such as combined fractional diagonal chromatography (COFRADIC)1 and, later, terminal amine isotopic labeling of substrates (TAILS) have revealed numerous insights into protease substrates and consensus motifs. We present an alternative and simple protocol for N-terminal peptide enrichment, based on charge-based fractional diagonal chromatography (ChaFRADIC) and requiring only well-established protein chemistry and a pipette tip. Using iTRAQ-8-plex, we quantified on average 2,073 ± 52 unique N-terminal peptides from only 4.3 μg per sample/channel, allowing the identification of proteolytic targets and consensus motifs. This high sensitivity may even allow working with clinical samples such as needle biopsies in the future. We applied our method to study the dynamics of staurosporine-induced apoptosis. Our data demonstrate an orchestrated regulation of specific pathways after 1.5 h, 3 h, and 6 h of treatment, with many important players of homeostasis targeted already after 1.5 h. We additionally observed an early multilevel modulation of the splicing machinery both by proteolysis and phosphorylation. This may reflect the known role of alternative splicing variants for a variety of apoptotic genes, which seems to be a driving force of staurosporine-induced apoptosis.
Collapse
Affiliation(s)
- Gerta Shema
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Minh T N Nguyen
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Fiorella A Solari
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Stefan Loroch
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - A Saskia Venne
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Laxmikanth Kollipara
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Albert Sickmann
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.,§Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, 44801 Bochum, Germany.,¶Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland, United Kingdom
| | - Steven H L Verhelst
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.,‖Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - René P Zahedi
- From the ‡Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany; .,**Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H4A 3T2, Canada.,‡‡Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
7
|
Plenker D, Riedel M, Brägelmann J, Dammert MA, Chauhan R, Knowles PP, Lorenz C, Keul M, Bührmann M, Pagel O, Tischler V, Scheel AH, Schütte D, Song Y, Stark J, Mrugalla F, Alber Y, Richters A, Engel J, Leenders F, Heuckmann JM, Wolf J, Diebold J, Pall G, Peifer M, Aerts M, Gevaert K, Zahedi RP, Buettner R, Shokat KM, McDonald NQ, Kast SM, Gautschi O, Thomas RK, Sos ML. Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors. Sci Transl Med 2017; 9:eaah6144. [PMID: 28615362 PMCID: PMC5805089 DOI: 10.1126/scitranslmed.aah6144] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/03/2017] [Accepted: 03/21/2017] [Indexed: 01/25/2023]
Abstract
Oncogenic fusion events have been identified in a broad range of tumors. Among them, RET rearrangements represent distinct and potentially druggable targets that are recurrently found in lung adenocarcinomas. We provide further evidence that current anti-RET drugs may not be potent enough to induce durable responses in such tumors. We report that potent inhibitors, such as AD80 or ponatinib, that stably bind in the DFG-out conformation of RET may overcome these limitations and selectively kill RET-rearranged tumors. Using chemical genomics in conjunction with phosphoproteomic analyses in RET-rearranged cells, we identify the CCDC6-RETI788N mutation and drug-induced mitogen-activated protein kinase pathway reactivation as possible mechanisms by which tumors may escape the activity of RET inhibitors. Our data provide mechanistic insight into the druggability of RET kinase fusions that may be of help for the development of effective therapies targeting such tumors.
Collapse
Affiliation(s)
- Dennis Plenker
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Maximilian Riedel
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Marcel A Dammert
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Rakhee Chauhan
- Structural Biology Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Phillip P Knowles
- Structural Biology Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Carina Lorenz
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Marina Keul
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Mike Bührmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Oliver Pagel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Verena Tischler
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Andreas H Scheel
- Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
| | - Daniel Schütte
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Yanrui Song
- Crown BioScience, Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA
| | - Justina Stark
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Florian Mrugalla
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Yannic Alber
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - André Richters
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Julian Engel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | | | | | - Jürgen Wolf
- Department of Internal Medicine, Center for Integrated Oncology Köln Bonn, University Hospital Cologne, Cologne, 50931 Cologne, Germany
| | - Joachim Diebold
- Cancer Center, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | - Georg Pall
- Department of Internal Medicine 5, University Hospital Innsbruck, Haematology/Oncology, Anichstraße 35, 6020 Innsbruck, Austria
| | - Martin Peifer
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Maarten Aerts
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Reinhard Buettner
- Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Neil Q McDonald
- Structural Biology Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Stefan M Kast
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Oliver Gautschi
- Cancer Center, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Department of Internal Medicine, Center for Integrated Oncology Köln Bonn, University Hospital Cologne, Cologne, 50931 Cologne, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany.
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
8
|
Hendgen-Cotta UB, Esfeld S, Coman C, Ahrends R, Klein-Hitpass L, Flögel U, Rassaf T, Totzeck M. A novel physiological role for cardiac myoglobin in lipid metabolism. Sci Rep 2017; 7:43219. [PMID: 28230173 PMCID: PMC5322402 DOI: 10.1038/srep43219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023] Open
Abstract
Continuous contractile activity of the heart is essential and the required energy is mostly provided by fatty acid (FA) oxidation. Myocardial lipid accumulation can lead to pathological responses, however the underlying mechanisms remain elusive. The role of myoglobin in dioxygen binding in cardiomyocytes and oxidative skeletal muscle has widely been appreciated. Our recent work established myoglobin as a protector of cardiac function in hypoxia and disease states. We here unravel a novel role of cardiac myoglobin in governing FA metabolism to ensure the physiological energy production through β-oxidation, preventing myocardial lipid accumulation and preserving cardiac functions. In vivo1H magnetic resonance spectroscopy unveils a 3-fold higher deposition of lipids in mouse hearts lacking myoglobin, which was associated with depressed cardiac function compared to wild-type hearts as assessed by echocardiography. Mass spectrometry reveals a marked increase in tissue triglycerides with preferential incorporation of palmitic and oleic acids. Phospholipid levels as well as the metabolome, transcriptome and proteome related to FA metabolism tend to be unaffected by myoglobin ablation. Our results reveal a physiological role of myoglobin in FA metabolism with the lipid accumulation-suppressing effects of myoglobin preventing cardiac lipotoxicity.
Collapse
Affiliation(s)
- Ulrike B Hendgen-Cotta
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Sonja Esfeld
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V. Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V. Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Ludger Klein-Hitpass
- University Hospital Essen, Institute of Cell Biology, Medical Faculty, Virchowstr. 173, 45122 Essen, Germany
| | - Ulrich Flögel
- University Hospital Düsseldorf, Department of Molecular Cardiology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tienush Rassaf
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Totzeck
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
9
|
Aasebø E, Mjaavatten O, Vaudel M, Farag Y, Selheim F, Berven F, Bruserud Ø, Hernandez-Valladares M. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows. J Proteomics 2016; 145:214-225. [DOI: 10.1016/j.jprot.2016.03.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
|
10
|
Solari FA, Dell'Aica M, Sickmann A, Zahedi RP. Why phosphoproteomics is still a challenge. MOLECULAR BIOSYSTEMS 2016; 11:1487-93. [PMID: 25800119 DOI: 10.1039/c5mb00024f] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite continuous improvements phosphoproteomics still faces challenges that are often neglected, e.g. partially poor recovery of phosphopeptide enrichment, assessment of phosphorylation stoichiometry, label-free quantification, poor behavior during chromatography, and general limitations of peptide-centric proteomics. Here we critically discuss current limitations that need consideration in both qualitative and quantitative studies.
Collapse
Affiliation(s)
- Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
11
|
Coman C, Solari FA, Hentschel A, Sickmann A, Zahedi RP, Ahrends R. Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology. Mol Cell Proteomics 2016; 15:1453-66. [PMID: 26814187 DOI: 10.1074/mcp.m115.053702] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
Interconnected molecular networks are at the heart of signaling pathways that mediate adaptive plasticity of eukaryotic cells. To gain deeper insights into the underlying molecular mechanisms, a comprehensive and representative analysis demands a deep and parallel coverage of a broad spectrum of molecular species. Therefore, we introduce a simultaneous metabolite, protein, lipid extraction (SIMPLEX) procedure, a novel strategy for the quantitative investigation of lipids, metabolites, and proteins. Compared with unimolecular workflows, SIMPLEX offers a fundamental turn in study design since multiple molecular classes can be accessed in parallel from one sample with equal efficiency and reproducibility. Application of this method in mass-spectrometry-based workflows allowed the simultaneous quantification of 360 lipids, 75 metabolites, and 3327 proteins from 10(6)cells. The versatility of this method is shown in a model system for adipogenesis- peroxisomal proliferator-activated receptor gamma (PPARG) signaling in mesenchymal stem cells-where we utilized SIMPLEX to explore cross-talk within and between all three molecular classes and identified novel potential molecular entry points for interventions, indicating that SIMPLEX provides a superior strategy compared with conventional workflows.
Collapse
Affiliation(s)
- Cristina Coman
- ‖College of Physical Sciences, University of Aberdeen, Department of Chemistry, Aberdeen, UK
| | - Fiorella Andrea Solari
- ‖College of Physical Sciences, University of Aberdeen, Department of Chemistry, Aberdeen, UK
| | - Andreas Hentschel
- ‖College of Physical Sciences, University of Aberdeen, Department of Chemistry, Aberdeen, UK
| | - Albert Sickmann
- ‖College of Physical Sciences, University of Aberdeen, Department of Chemistry, Aberdeen, UK ‖College of Physical Sciences, University of Aberdeen, Department of Chemistry, Aberdeen, UK
| | - René Peiman Zahedi
- ‖College of Physical Sciences, University of Aberdeen, Department of Chemistry, Aberdeen, UK
| | - Robert Ahrends
- ‖College of Physical Sciences, University of Aberdeen, Department of Chemistry, Aberdeen, UK
| |
Collapse
|
12
|
Solari FA, Kollipara L, Sickmann A, Zahedi RP. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ. Methods Mol Biol 2016; 1394:25-41. [PMID: 26700039 DOI: 10.1007/978-1-4939-3341-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Altered and abnormal levels of proteins and their phosphorylation states are associated with many disorders. Detection and quantification of such perturbations may provide a better understanding of pathological conditions and help finding candidates for treatment or biomarkers. Over the years, isobaric mass tags for relative quantification of proteins and protein phosphorylation by mass spectrometry have become increasingly popular. One of the most commonly used isobaric chemical tags is iTRAQ (isobaric tag for relative and absolute quantitation). In a typical iTRAQ-8plex experiment, a multiplexed sample amounts for up to 800 μg of peptides. Using state-of-the-art LC-MS approaches, only a fraction (~5 %) of such a sample is required to generate comprehensive quantitative data on the global proteome level, so that the bulk of the sample can be simultaneously used for quantitative phosphoproteomics. Here, we provide a simple and straightforward protocol to perform quantitative analyses of both proteome and phosphoproteome from the same sample using iTRAQ.
Collapse
Affiliation(s)
- Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.
| |
Collapse
|