1
|
Cook GM, Sousa C, Schaeffer J, Wiles K, Jareonsettasin P, Kalyanasundaram A, Walder E, Casper C, Patel S, Chua PW, Riboni-Verri G, Raza M, Swaddiwudhipong N, Hui A, Abdullah A, Wajed S, Keynes RJ. Regulation of nerve growth and patterning by cell surface protein disulphide isomerase. eLife 2020; 9:54612. [PMID: 32452761 PMCID: PMC7269675 DOI: 10.7554/elife.54612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.
Collapse
Affiliation(s)
- Geoffrey Mw Cook
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Catia Sousa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Grenoble Institute des Neurosciences, La Tronche, France
| | - Julia Schaeffer
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Wiles
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Independent researcher, London, United Kingdom
| | - Prem Jareonsettasin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Exeter College, Oxford, United Kingdom
| | - Asanish Kalyanasundaram
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Clinical Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Eleanor Walder
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Clinical Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Catharina Casper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Winter, Brandl, Fürniss, Hübner, Röss, Kaiser & Polte, Partnerschaft mbB, Patent und Rechtsanwaltskanzlei, München, Germany
| | - Serena Patel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Clinical Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Pei Wei Chua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
| | - Gioia Riboni-Verri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Mansoor Raza
- Cambridge Innovation Capital, Cambridge, United Kingdom
| | - Nol Swaddiwudhipong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Hui
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ameer Abdullah
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Saj Wajed
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,University of Exeter Medical School, Exeter, United Kingdom
| | - Roger J Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|