1
|
Wan Z, Hu H, Liu K, Qiao Y, Guo F, Wang C, Xin F, Zhang W, Jiang M. Engineering industrial yeast for improved tolerance and robustness. Crit Rev Biotechnol 2024; 44:1461-1477. [PMID: 38503543 DOI: 10.1080/07388551.2024.2326677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/15/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024]
Abstract
As an important cell factory, industrial yeast has been widely used for the production of compounds ranging from bulk chemicals to complex natural products. However, various adverse conditions including toxic products, extreme pH, and hyperosmosis etc., severely restrict microbial growth and metabolic performance, limiting the fermentation efficiency and diminishing its competitiveness. Therefore, enhancing the tolerance and robustness of yeasts is critical to ensure reliable and sustainable production of metabolites in complex industrial production processes. In this review, we provide a comprehensive review of various strategies for improving the tolerance of yeast cells, including random mutagenesis, system metabolic engineering, and material-mediated immobilization cell technology. It is expected that this review will provide a new perspective to realize the response and intelligent regulation of yeast cells to environmental stresses.
Collapse
Affiliation(s)
- Zijian Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Haibo Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Kang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Yangyi Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Chao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
2
|
Legon L, Rallis C. Genome-wide screens in yeast models towards understanding chronological lifespan regulation. Brief Funct Genomics 2021; 21:4-12. [PMID: 33728458 PMCID: PMC8834652 DOI: 10.1093/bfgp/elab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular models such as yeasts are a driving force in biogerontology studies. Their simpler genome, short lifespans and vast genetic and genomics resources make them ideal to characterise pro-ageing and anti-ageing genes and signalling pathways. Over the last three decades, yeasts have contributed to the understanding of fundamental aspects of lifespan regulation including the roles of nutrient response, global protein translation rates and quality, DNA damage, oxidative stress, mitochondrial function and dysfunction as well as autophagy. In this short review, we focus on approaches used for competitive and non-competitive cell-based screens using the budding yeast Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe, for deciphering the molecular mechanisms underlying chronological ageing. Automation accompanied with appropriate computational tools allowed manipulation of hundreds of thousands of colonies, generation, processing and analysis of genome-wide lifespan data. Together with barcoding and modern mutagenesis technologies, these approaches have allowed to take decisive steps towards a global, comprehensive view of cellular ageing.
Collapse
Affiliation(s)
- Luc Legon
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
3
|
Yu ZQ, Sun LL, Jiang ZD, Liu XM, Zhao D, Wang HT, He WZ, Dong MQ, Du LL. Atg38-Atg8 interaction in fission yeast establishes a positive feedback loop to promote autophagy. Autophagy 2020; 16:2036-2051. [PMID: 31941401 PMCID: PMC7595586 DOI: 10.1080/15548627.2020.1713644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy (autophagy) is driven by the coordinated actions of core autophagy-related (Atg) proteins. Atg8, the core Atg protein generally considered acting most downstream, has recently been shown to interact with other core Atg proteins via their Atg8-family-interacting motifs (AIMs). However, the extent, functional consequence, and evolutionary conservation of such interactions remain inadequately understood. Here, we show that, in the fission yeast Schizosaccharomyces pombe, Atg38, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex I, interacts with Atg8 via an AIM, which is highly conserved in Atg38 proteins of fission yeast species, but not conserved in Atg38 proteins of other species. This interaction recruits Atg38 to Atg8 on the phagophore assembly site (PAS) and consequently enhances PAS accumulation of the PtdIns3K complex I and Atg proteins acting downstream of the PtdIns3K complex I, including Atg8. The disruption of the Atg38-Atg8 interaction leads to the reduction of autophagosome size and autophagic flux. Remarkably, the loss of this interaction can be compensated by an artificial Atg14-Atg8 interaction. Our findings demonstrate that the Atg38-Atg8 interaction in fission yeast establishes a positive feedback loop between Atg8 and the PtdIns3K complex I to promote efficient autophagosome formation, underscore the prevalence and diversity of AIM-mediated connections within the autophagic machinery, and reveal unforeseen flexibility of such connections. Abbreviations: AIM: Atg8-family-interacting motif; AP-MS: affinity purification coupled with mass spectrometry; Atg: autophagy-related; FLIP: fluorescence loss in photobleaching; PAS: phagophore assembly site; PB: piggyBac; PE: phosphatidylethanolamine; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate.
Collapse
Affiliation(s)
- Zhong-Qiu Yu
- National Institute of Biological Sciences , Beijing, China.,PTN Graduate Program, School of Life Sciences, Peking University , Beijing, China
| | - Ling-Ling Sun
- National Institute of Biological Sciences , Beijing, China
| | - Zhao-Di Jiang
- National Institute of Biological Sciences , Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences , Beijing, China
| | - Dan Zhao
- National Institute of Biological Sciences , Beijing, China
| | - Hai-Tao Wang
- National Institute of Biological Sciences , Beijing, China
| | - Wan-Zhong He
- National Institute of Biological Sciences , Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences , Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University , Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences , Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University , Beijing, China
| |
Collapse
|
4
|
Systematic analysis reveals the prevalence and principles of bypassable gene essentiality. Nat Commun 2019; 10:1002. [PMID: 30824696 PMCID: PMC6397241 DOI: 10.1038/s41467-019-08928-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Gene essentiality is a variable phenotypic trait, but to what extent and how essential genes can become dispensable for viability remain unclear. Here, we investigate 'bypass of essentiality (BOE)' - an underexplored type of digenic genetic interaction that renders essential genes dispensable. Through analyzing essential genes on one of the six chromosome arms of the fission yeast Schizosaccharomyces pombe, we find that, remarkably, as many as 27% of them can be converted to non-essential genes by BOE interactions. Using this dataset we identify three principles of essentiality bypass: bypassable essential genes tend to have lower importance, tend to exhibit differential essentiality between species, and tend to act with other bypassable genes. In addition, we delineate mechanisms underlying bypassable essentiality, including the previously unappreciated mechanism of dormant redundancy between paralogs. The new insights gained on bypassable essentiality deepen our understanding of genotype-phenotype relationships and will facilitate drug development related to essential genes.
Collapse
|
5
|
Wagner JM, Williams EV, Alper HS. Developing a piggyBac Transposon System and Compatible Selection Markers for Insertional Mutagenesis and Genome Engineering in Yarrowia lipolytica. Biotechnol J 2018; 13:e1800022. [PMID: 29493878 DOI: 10.1002/biot.201800022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/17/2018] [Indexed: 12/30/2022]
Abstract
Yarrowia lipolytica is a non-conventional yeast of interest to the biotechnology industry. However, the physiology, metabolism, and genetic regulation of Y. lipolytica diverge significantly from more well-studied and characterized yeasts such as Saccharomyces cerevisiae. To develop additional genetic tools for this industrially relevant host, the piggyBac transposon system to enable efficient generation of genome-wide insertional mutagenesis libraries and introduction of scarless, footprint-free genomic modifications in Y. lipolytica. Specifically, we demonstrate piggyBac transposition in Y. lipolytica, and then use the approach to screen transposon insertion libraries for rapid isolation of mutations that confer altered canavanine resistance, pigment formation, and neutral lipid accumulation. We also develop a variety of piggyBac compatible selection markers for footprint-free genome engineering, including a novel dominant marker cassette (Escherichia coli guaB) for effective Y. lipolytica selection using mycophenolic acid. We utilize these marker cassettes to construct a piggyBac vector set that allows for auxotrophic selection (uracil or tryptophan biosynthesis) or dominant selection (hygromycin, nourseothricin, chlorimuron ethyl, or mycophenolic acid resistance) and subsequent marker excision. These new genetic tools and techniques will help to facilitate and accelerate the engineering of Y. lipolytica strains for efficient and sustainable production of a wide variety of small molecules and proteins.
Collapse
Affiliation(s)
- James M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Eden V Williams
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|
6
|
Hoffman CS, Wood V, Fantes PA. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System. Genetics 2015; 201:403-23. [PMID: 26447128 PMCID: PMC4596657 DOI: 10.1534/genetics.115.181503] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe.
Collapse
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467
| | - Valerie Wood
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Peter A Fantes
- School of Biological Sciences, College of Science and Engineering, University of Edinburgh EH9 3JR Edinburgh, United Kingdom
| |
Collapse
|