1
|
Kowalski WJ, Vatti S, Sakamoto T, Li W, Odutola SR, Liu C, Chen G, Boehm M, Mukouyama YS. In vivo transplantation of mammalian vascular organoids onto the chick chorioallantoic membrane reveals the formation of a hierarchical vascular network. Sci Rep 2025; 15:7150. [PMID: 40021912 PMCID: PMC11871353 DOI: 10.1038/s41598-025-91826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
The dynamic remodeling of the nascent vascular network into a mature hierarchy is essential for embryo survival. Cell behaviors and signaling mechanisms are often investigated with animal models and perfused microchannels, giving insights into this process. To support these studies and enrich our understanding, we demonstrate a complementary approach using vascular organoids. Organoids initially form a primitive endothelial plexus lined with NG2+/PDGFRβ+ mural cell progenitors containing immature pericytes, but there is no formation of large-diameter vessels covered with αSMA+ cells containing immature vascular smooth muscle cells (vSMCs). After transplantation to the chick chorioallantoic membrane, the network reorganizes into a branched architecture with large-diameter vessels covered by αSMA+ cells. We additionally show that blood flow from the host circulation perfuses the organoid. Compared with the developing skin vasculature in mouse embryos, organoids successfully recapitulate vascular morphogenesis, both in vitro and after transplantation. The model described here presents a further approach to enhance the study of vascular remodeling.
Collapse
Affiliation(s)
- William J Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shravani Vatti
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tyler Sakamoto
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Harvard College, Cambridge, MA, USA
| | - Wenling Li
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Rose Odutola
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Harvard College, Cambridge, MA, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Yalcin HC, Amindari A, Butcher JT, Althani A, Yacoub M. Heart function and hemodynamic analysis for zebrafish embryos. Dev Dyn 2017; 246:868-880. [PMID: 28249360 DOI: 10.1002/dvdy.24497] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/28/2022] Open
Abstract
The Zebrafish has emerged to become a powerful vertebrate animal model for cardiovascular research in recent years. Its advantages include easy genetic manipulation, transparency, small size, low cost, and the ability to survive without active circulation at early stages of development. Sequencing the whole genome and identifying ortholog genes with human genome made it possible to induce clinically relevant cardiovascular defects via genetic approaches. Heart function and disturbed hemodynamics need to be assessed in a reliable manner for these disease models in order to reveal the mechanobiology of induced defects. This effort requires precise determination of blood flow patterns as well as hemodynamic stress (i.e., wall shear stress and pressure) levels within the developing heart. While traditional approach involves time-lapse brightfield microscopy to track cell and tissue movements, in more recent studies fast light-sheet fluorescent microscopes are utilized for that purpose. Integration of more complicated techniques like particle image velocimetry and computational fluid dynamics modeling for hemodynamic analysis holds a great promise to the advancement of the Zebrafish studies. Here, we discuss the latest developments in heart function and hemodynamic analysis for Zebrafish embryos and conclude with our future perspective on dynamic analysis of the Zebrafish cardiovascular system. Developmental Dynamics 246:868-880, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Armin Amindari
- Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Magdi Yacoub
- Imperial College, NHLI, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
3
|
Goktas S, Uslu FE, Kowalski WJ, Ermek E, Keller BB, Pekkan K. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development. PLoS One 2016; 11:e0161611. [PMID: 27552150 PMCID: PMC4994943 DOI: 10.1371/journal.pone.0161611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis.
Collapse
Affiliation(s)
- Selda Goktas
- Mechanical Engineering Department, Koc University, Istanbul, Turkey
| | - Fazil E. Uslu
- Mechanical Engineering Department, Koc University, Istanbul, Turkey
| | - William J. Kowalski
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States of America
| | - Erhan Ermek
- Mechanical Engineering Department, Koc University, Istanbul, Turkey
| | - Bradley B. Keller
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States of America
| | - Kerem Pekkan
- Mechanical Engineering Department, Koc University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|