1
|
Shao B, Wang HD, Ren SH, Chen Q, Wang ZB, Xu YN, Liu T, Sun CL, Xiao YY, Jiang HY, Li YC, Zhao PY, Yang GM, Liu X, Ren YF, Wang H. Exosomes derived from a mesenchymal-like endometrial regenerative cells ameliorate renal ischemia reperfusion injury through delivery of CD73. Stem Cell Res Ther 2025; 16:148. [PMID: 40140882 PMCID: PMC11948919 DOI: 10.1186/s13287-025-04275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Renal ischemia reperfusion (I/R) injury is a major contributor to graft dysfunction and inflammation leading to graft loss. The deregulation of purinergic signaling has been implicated in the pathogenesis of renal I/R injury. CD73 and the generation of adenosine during purine metabolism to protect against renal I/R injury. A mesenchymal-like endometrial regenerative cell (ERC) has demonstrated a significant therapeutic effect on renal I/R injury. CD73 is a phenotypic marker of human endometrial regenerative cell exosomes (ERC-Exo). However, its immunosuppressive function in regulating purinergic metabolism has been largely neglected. Here, we investigate the protective effects and mechanism of ERC-Exo against renal I/R injury. METHODS Lentivirus-mediated CRISPR-Cas9 technology was employed to obtain CD73-specific knockout ERC-Exo (CD73-/-ERC-Exo). C57BL/6 mice who underwent unilateral ureteral obstruction were divided into the Untreated, ERC-Exo-treated, and CD73-/-ERC-Exo-treated groups. Renal function and pathological injury were assessed 3 days after renal reperfusion. The infiltration of CD4+ T cells and macrophages was analyzed by flow cytometry and immunofluorescence staining in kidneys. CD73-mediated immunosuppressive activity of ERC-Exo was investigated by bone marrow-derived macrophages (BMDM) co-culture assay in vitro. Flow cytometry determined macrophage polarization. ELISA and Treg proliferation assays detected the function of macrophages. Furthermore, the role of the MAPK pathway in CD73-positive Exo-induced macrophage polarization was also elucidated. RESULTS Compared with Untreated and CD73-/-ERC-Exo-treated groups, CD73-positive Exo effectively improved the serum creatinine (sCr), blood urea nitrogen (BUN), and necrosis and detachment of tubular epithelial cells, necrosis and proteinaceous casts induced by ischemia. CD73 improved the capacity of ERC-Exo on CD4+ T cell differentiation in the renal immune microenvironment. Surprisingly, ERC-Exosomal CD73 significantly decreased the populations of M1 cells but increased the proportions of M2 in kidneys. Furthermore, CD73-positive Exo markedly reduced the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased anti-inflammatory factors (IL-10) level in kidneys. ERC-Exosomal CD73 improved macrophage immunoregulatory function associated with the MAPK pathway (including ERK1/2 and p38 pathways), which exerted a potent therapeutic effect against renal I/R. CONCLUSIONS These data collected insight into how ERC-Exo facilitated the hydrolysis of proinflammatory ATP to immunosuppressive ADO via CD73. CD73 is a critical modulator of the MAPK signaling pathway, inducing a polarization shift of macrophages towards an anti-inflammatory phenotype. This study highlights the significance of ERC-Exosomal CD73 in contributing to the therapeutic effects against renal I/R.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-Bo Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Yu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Cheng Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-Mei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Fan Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
2
|
Fu Y, Xiang Y, Wei Q, Ilatovskaya D, Dong Z. Rodent models of AKI and AKI-CKD transition: an update in 2024. Am J Physiol Renal Physiol 2024; 326:F563-F583. [PMID: 38299215 PMCID: PMC11208034 DOI: 10.1152/ajprenal.00402.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Yu Xiang
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Daria Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
- Research Department, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| |
Collapse
|
3
|
Lee M, Ahn C, Kim K, Jeung EB. Mitochondrial Toxic Effects of Antiepileptic Drug Valproic Acid on Mouse Kidney Stem Cells. TOXICS 2023; 11:toxics11050471. [PMID: 37235285 DOI: 10.3390/toxics11050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Valproic acid (VPA) is a histone deacetylase inhibitor that is used mainly as an antiepileptic and anticonvulsant drug. The side effects of VPA usually appears as hepatic injury and various metabolic disorders. On the other hand, it is rarely reported to cause kidney injury. Despite the many studies on the influence of VPA exposure on the kidneys, the specific mechanism remains unclear. This study examined the changes after VPA treatment to the mouse kidney stem cells (mKSCs). VPA triggers an increase in mitochondrial ROS, but there was no change in either mitochondrial membrane potential or the mitochondrial DNA copy number in mKSCs. The VPA treatment increased the mitochondrial complex III but decreased complex V significantly compared to the DMSO treatment as a control. The inflammatory marker (IL-6) and the expression of the apoptosis markers (Caspase 3) and were increased by VPA. In particular, the expression of the podocyte injury markers (CD2AP) was increased significantly. In conclusion, VPA exposure has adverse effects on mouse kidney stem cells.
Collapse
Affiliation(s)
- Minsu Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - KangMin Kim
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
4
|
Brezgunova AA, Andrianova NV, Popkov VA, Tkachev SY, Manskikh VN, Pevzner IB, Zorova LD, Timashev PS, Silachev DN, Zorov DB, Plotnikov EY. New experimental model of kidney injury: Photothrombosis-induced kidney ischemia. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166622. [PMID: 36526237 DOI: 10.1016/j.bbadis.2022.166622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a frequent pathology with a high mortality rate after even a single AKI episode and a great risk of chronic kidney disease (CKD) development. To get insight into mechanisms of the AKI pathogenesis, there is a need to develop diverse experimental models of the disease. Photothrombosis is a widely used method for inducing ischemia in the brain. In this study, for the first time, we described photothrombosis-induced kidney ischemia as an appropriate model of AKI and obtained comprehensive characteristics of the photothrombotic lesion using micro-computed tomography (micro-CT) and histological techniques. In the ischemic area, we observed destruction of tubules, the loss of brush border and nuclei, connective tissue fibers disorganization, leukocyte infiltration, and hyaline casts formation. In kidney tissue and urine, we revealed increased levels in markers of proliferation and injury. The explicit long-term consequence of photothrombosis-induced kidney ischemia was renal fibrosis. Thus, we establish a new low invasive experimental model of AKI, which provides a reproducible local ischemic injury lesion. We propose our model of photothrombosis-induced kidney ischemia as a useful approach for investigating AKI pathogenesis, studying the mechanisms of kidney regeneration, and development of therapy against AKI and CKD.
Collapse
Affiliation(s)
- Anna A Brezgunova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Sergey Y Tkachev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vasily N Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia.
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia.
| |
Collapse
|
5
|
Hinze C, Kocks C, Leiz J, Karaiskos N, Boltengagen A, Cao S, Skopnik CM, Klocke J, Hardenberg JH, Stockmann H, Gotthardt I, Obermayer B, Haghverdi L, Wyler E, Landthaler M, Bachmann S, Hocke AC, Corman V, Busch J, Schneider W, Himmerkus N, Bleich M, Eckardt KU, Enghard P, Rajewsky N, Schmidt-Ott KM. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury. Genome Med 2022; 14:103. [PMID: 36085050 PMCID: PMC9462075 DOI: 10.1186/s13073-022-01108-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/12/2022] [Indexed: 01/07/2023] Open
Abstract
Background Acute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. Methods We performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1–2 h after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. Results High-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs, and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. Conclusions The study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.
Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01108-9.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christine Kocks
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Janna Leiz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nikos Karaiskos
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Anastasiya Boltengagen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Shuang Cao
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christopher Mark Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Jan-Hendrik Hardenberg
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Inka Gotthardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | - Laleh Haghverdi
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Sebastian Bachmann
- Institute for Functional Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Berlin Institute of Health, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Wolfgang Schneider
- Department of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany. .,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany. .,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
6
|
Machado SE, Spangler D, Black LM, Traylor AM, Balla J, Zarjou A. A Reproducible Mouse Model of Moderate CKD With Early Manifestations of Osteoblastic Transition of Cardiovascular System. Front Physiol 2022; 13:897179. [PMID: 35574469 PMCID: PMC9099146 DOI: 10.3389/fphys.2022.897179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant public health challenge with a substantial associated risk of mortality, morbidity, and health care expenditure. Culprits that lead to development and progression of CKD are multifaceted and heterogenous in nature. This notion underscores the need for diversification of animal models to investigate its pathophysiology, related complications, and to subsequently enable discovery of novel therapeutics. Importantly, animal models that could recapitulate complications of CKD in both genders are desperately needed. Cardiovascular disease is the most common cause of death in CKD patients that may be due in part to high prevalence of vascular calcification (VC). Using DBA/2 mice that are susceptible to development of VC, we sought to investigate the feasibility and reproducibility of a unilateral ischemia-reperfusion model followed by contralateral nephrectomy (UIRI/Nx) to induce CKD and its related complications in female and male mice. Our results demonstrate that irrespective of gender, mice faithfully displayed complications of moderate CKD following UIRI/Nx as evidenced by significant rise in serum creatinine, albuminuria, higher degree of collagen deposition, elevated expression of classic fibrotic markers, higher circulating levels of FGF-23, PTH and hepcidin. Moreover, we corroborate the osteoblastic transition of aortic smooth muscle cells and cardiomyocytes based on higher levels of osteoblastic markers namely, Cbfa-1, osteopontin, osteocalcin, and osterix. Our data confirms a viable, and consistent model of moderate CKD and its associated complications in both male and female mice. Furthermore, early evidence of osteoblastic transition of cardiovascular system in this model confirms its suitability for studying and implementing potential preventive and/or therapeutic approaches that are urgently needed in this field.
Collapse
Affiliation(s)
- Sarah E Machado
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Daryll Spangler
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Laurence M. Black
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Amie M. Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - József Balla
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Division of Nephrology, Department of Medicine, Faculty of Medicine, Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary,*Correspondence: Abolfazl Zarjou,
| |
Collapse
|
7
|
Yuqiang C, Lisha Z, Jiejun W, Qin X, Niansong W. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation. Ren Fail 2022; 44:473-481. [PMID: 35285384 PMCID: PMC8928845 DOI: 10.1080/0886022x.2022.2048857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives Rhabdomyolysis is a series of symptoms caused by the dissolution of striped muscle, and acute kidney injury (AKI) is a potential complication of severe rhabdomyolysis. The underlying causes of AKI are remarkably complex and diverse. Here, we aim to investigate whether pifithrin-α protected against rhabdomyolysis-induced AKI and to determine the involved mechanisms. Methods Intramuscular injection in the right thigh caudal muscle of C57BL/6J mice with 7.5 ml/kg saline (Group A) or of the same volume 50% glycerol was used to induce rhabdomyolysis and subsequent AKI (Group B). Pifithrin-α was injected intraperitoneally 4 h before (Group C) or 4 h after (Group D) the glycerol injection. Serum creatine kinase, blood urea nitrogen, and creatinine were determined, and the renal cortex was histologically analyzed. Renal expression levels of interested mRNAs and proteins were determined and compared, too. Results Intramuscular injection of glycerol induced rhabdomyolysis and subsequent AKI in mice (Groups B–D). Renal function reduction and histologic injury of renal tubular epithelial cells were associated with increased p53 activation, oxidative stress, and inflammation. Notably, compared with pifithrin-α rescue therapy (Group D), pretreatment of pifithrin-α (Group C) protected the mice from severe injury more effectively. Conclusions Our present study suggests that p53 may be a therapeutic target of AKI caused by glycerol, and the inhibition of p53 can block glycerol-mediated AKI by using pharmacological agents instead of genetic inhibitory approaches, which further supports that p53 played a pivotal role in renal tubular injury when challenged with glycerol.
Collapse
Affiliation(s)
- Chen Yuqiang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhang Lisha
- Department of Emergency, Shanghai Punan Hospital, Pudong New District, Shanghai, China
| | - Wen Jiejun
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xue Qin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wang Niansong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Zhang Y, Tang PMK, Niu Y, García Córdoba CA, Huang XR, Yu C, Lan HY. Long Non-coding RNA LRNA9884 Promotes Acute Kidney Injury via Regulating NF-kB-Mediated Transcriptional Activation of MIF. Front Physiol 2020; 11:590027. [PMID: 33192605 PMCID: PMC7658631 DOI: 10.3389/fphys.2020.590027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common complications affecting hospitalized patients associated with an extremely high mortality rate. However, the underlying pathogenesis of AKI remains unclear that largely limits its effective management in clinic. Increasing evidence demonstrated the importance of long non-coding RNAs (lncRNAs) in the pathogenesis of AKI, because of their regulatory roles in transcription, translation, chromatin modification, and cellular organization. Here, we reported a new role of LRNA9884 in AKI. Using experimental cisplatin-induced AKI model, we found that LRNA9884 was markedly up-regulated in the nucleus of renal tubular epithelium in mice with AKI. We found that silencing of LRNA9884 effectively inhibited the production of inflammatory cytokines MCP-1, IL-6, and TNF-α in the mouse renal tubular epithelial cells (mTECs) under IL-1β stimulation in vitro. Mechanistically, LRNA9884 was involved into NF-κB-mediated inflammatory cytokines production especially on macrophage migration inhibitory factor (MIF). Collectedly, our study suggested LRNA9884 promoted MIF-triggered the production of inflammatory cytokines via NF-κB pathway after AKI injury. This study uncovered LRNA9884 has an adverse impact in AKI, and targeting LRNA9884 might represent a potential therapeutic target for AKI.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangyang Niu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cristina Alexandra García Córdoba
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
9
|
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.
Collapse
Affiliation(s)
- Niharika Shiva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
10
|
Salei N, Rambichler S, Salvermoser J, Papaioannou NE, Schuchert R, Pakalniškytė D, Li N, Marschner JA, Lichtnekert J, Stremmel C, Cernilogar FM, Salvermoser M, Walzog B, Straub T, Schotta G, Anders HJ, Schulz C, Schraml BU. The Kidney Contains Ontogenetically Distinct Dendritic Cell and Macrophage Subtypes throughout Development That Differ in Their Inflammatory Properties. J Am Soc Nephrol 2020; 31:257-278. [PMID: 31932472 DOI: 10.1681/asn.2019040419] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mononuclear phagocytes (MPs), including macrophages, monocytes, and dendritic cells (DCs), are phagocytic cells with important roles in immunity. The developmental origin of kidney DCs has been highly debated because of the large phenotypic overlap between macrophages and DCs in this tissue. METHODS We used fate mapping, RNA sequencing, flow cytometry, confocal microscopy, and histo-cytometry to assess the origin and phenotypic and functional properties of renal DCs in healthy kidney and of DCs after cisplatin and ischemia reperfusion-induced kidney injury. RESULTS Adult kidney contains at least four subsets of MPs with prominent Clec9a-expression history indicating a DC origin. We demonstrate that these populations are phenotypically, functionally, and transcriptionally distinct from each other. We also show these kidney MPs exhibit unique age-dependent developmental heterogeneity. Kidneys from newborn mice contain a prominent population of embryonic-derived MHCIInegF4/80hiCD11blow macrophages that express T cell Ig and mucin domain containing 4 (TIM-4) and MER receptor tyrosine kinase (MERTK). These macrophages are replaced within a few weeks after birth by phenotypically similar cells that express MHCII but lack TIM-4 and MERTK. MHCII+F4/80hi cells exhibit prominent Clec9a-expression history in adulthood but not early life, indicating additional age-dependent developmental heterogeneity. In AKI, MHCIInegF4/80hi cells reappear in adult kidneys as a result of MHCII downregulation by resident MHCII+F4/80hi cells, possibly in response to prostaglandin E2 (PGE2). RNA sequencing further suggests MHCII+F4/80hi cells help coordinate the recruitment of inflammatory cells during renal injury. CONCLUSIONS Distinct developmental programs contribute to renal DC and macrophage populations throughout life, which could have important implications for therapies targeting these cells.
Collapse
Affiliation(s)
- Natallia Salei
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Stephan Rambichler
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Johanna Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Nikos E Papaioannou
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Ronja Schuchert
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Dalia Pakalniškytė
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Na Li
- Division of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shen Zhen, China.,Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julian A Marschner
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julia Lichtnekert
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christopher Stremmel
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | | | - Melanie Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | | | - Gunnar Schotta
- Division of Molecular Biology.,Center for Integrated Protein Science Munich, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Schulz
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Barbara U Schraml
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich, .,Institute for Cardiovascular Physiology and Pathophysiology
| |
Collapse
|
11
|
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 2019; 317:F1255-F1264. [DOI: 10.1152/ajprenal.00346.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The popular anticancer drug cisplatin causes many adverse side effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses antioxidant properties and has shown promise in mouse models of AKI. However, therapeutic potential of UA is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that use a surface-conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a sevenfold enhancement in oral bioavailability compared with native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of nuclear factor erythroid 2-related factor 2- and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, poly(ADP-ribose) polymerase 1 levels, antiapoptotic signaling, intracellular NAD+, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increase the oral bioavailability of UA, leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Collapse
Affiliation(s)
- Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | | | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
12
|
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 2019. [DOI: 10.1152/ajprenal.00346.2019 pmid: 31532243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The popular anticancer drug cisplatin causes many adverse side effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses antioxidant properties and has shown promise in mouse models of AKI. However, therapeutic potential of UA is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that use a surface-conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a sevenfold enhancement in oral bioavailability compared with native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of nuclear factor erythroid 2-related factor 2- and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, poly(ADP-ribose) polymerase 1 levels, antiapoptotic signaling, intracellular NAD+, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increase the oral bioavailability of UA, leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Collapse
Affiliation(s)
- Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | | | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
Giroud-Gerbetant J, Joffraud M, Giner MP, Cercillieux A, Bartova S, Makarov MV, Zapata-Pérez R, Sánchez-García JL, Houtkooper RH, Migaud ME, Moco S, Canto C. A reduced form of nicotinamide riboside defines a new path for NAD + biosynthesis and acts as an orally bioavailable NAD + precursor. Mol Metab 2019; 30:192-202. [PMID: 31767171 PMCID: PMC6807296 DOI: 10.1016/j.molmet.2019.09.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE A decay in intracellular NAD+ levels is one of the hallmarks of physiological decline in normal tissue functions. Accordingly, dietary supplementation with NAD+ precursors can prevent, alleviate, or even reverse multiple metabolic complications and age-related disorders in diverse model organisms. Within the constellation of NAD+ precursors, nicotinamide riboside (NR) has gained attention due to its potent NAD+ biosynthetic effects in vivo while lacking adverse clinical effects. Nevertheless, NR is not stable in circulation, and its utilization is rate-limited by the expression of nicotinamide riboside kinases (NRKs). Therefore, there is a strong interest in identifying new effective NAD+ precursors that can overcome these limitations. METHODS Through a combination of metabolomics and pharmacological approaches, we describe how NRH, a reduced form of NR, serves as a potent NAD+ precursor in mammalian cells and mice. RESULTS NRH acts as a more potent and faster NAD+ precursor than NR in mammalian cells and tissues. Despite the minor structural difference, we found that NRH uses different steps and enzymes to synthesize NAD+, thus revealing a new NRK1-independent pathway for NAD+ synthesis. Finally, we provide evidence that NRH is orally bioavailable in mice and prevents cisplatin-induced acute kidney injury. CONCLUSIONS Our data identify a new pathway for NAD+ synthesis and classify NRH as a promising new therapeutic strategy to enhance NAD+ levels.
Collapse
Affiliation(s)
- Judith Giroud-Gerbetant
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Magali Joffraud
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Maria Pilar Giner
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland; School of Life Sciences, EPFL, Lausanne, 1015, Switzerland
| | - Simona Bartova
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604, Alabama, USA
| | - Rubén Zapata-Pérez
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - José L Sánchez-García
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604, Alabama, USA
| | - Sofia Moco
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland; School of Life Sciences, EPFL, Lausanne, 1015, Switzerland.
| |
Collapse
|
14
|
Baek JH. The Impact of Versatile Macrophage Functions on Acute Kidney Injury and Its Outcomes. Front Physiol 2019; 10:1016. [PMID: 31447703 PMCID: PMC6691123 DOI: 10.3389/fphys.2019.01016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a common and devastating clinical condition with a high morbidity and mortality rate and is associated with a rapid decline of kidney function mostly resulting from the injury of proximal tubules. AKI is typically accompanied by inflammation and immune activation and involves macrophages (Mϕ) from the beginning: The inflamed kidney recruits “classically” activated (M1) Mϕ, which are initially poised to destroy potential pathogens, exacerbating inflammation. Of note, they soon turn into “alternatively” activated (M2) Mϕ and promote immunosuppression and tissue regeneration. Based on their roles in kidney recovery, there is a growing interest to use M2 Mϕ and Mϕ-modulating agents therapeutically against AKI. However, it is pertinent to note that the clinical translation of Mϕ-based therapies needs to be critically reviewed and questioned since Mϕ are functionally plastic with versatile roles in AKI and some Mϕ functions are detrimental to the kidney during AKI. In this review, we discuss the current state of knowledge on the biology of different Mϕ subtypes during AKI and, especially, on their role in AKI and assess the impact of versatile Mϕ functions on AKI based on the findings from translational AKI studies.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Research & Early Development, Biogen Inc., Cambridge, MA, United States
| |
Collapse
|
15
|
Fu H, Zhou D, Zhu H, Liao J, Lin L, Hong X, Hou FF, Liu Y. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019; 95:1167-1180. [PMID: 30878215 PMCID: PMC6478554 DOI: 10.1016/j.kint.2018.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted endopeptidase that degrades a broad range of substrates. Recent studies have identified MMP-7 as an early biomarker to predict severe acute kidney injury (AKI) and poor outcomes after cardiac surgery; however, the role of MMP-7 in the pathogenesis of AKI is unknown. In this study, we investigated the expression of MMP-7 and the impact of MMP-7 deficiency in several models of AKI. MMP-7 was induced in renal tubules following ischemia/ reperfusion injury or cisplatin administration, and in folic acid-induced AKI. MMP-7 knockout mice experienced higher mortality, elevated serum creatinine, and more severe histologic lesions after ischemic or toxic insults. Tubular apoptosis and interstitial inflammation were more prominent in MMP-7 knockout kidneys. These histologic changes were accompanied by increased expression of FasL and other components of the extrinsic apoptotic pathway, as well as increased expression of pro-inflammatory chemokines. In a rescue experiment, exogenous MMP-7 ameliorated kidney injury in MMP-7 knockout mice after ischemia/reperfusion. In vitro, MMP-7 protected tubular epithelial cells against apoptosis by directly degrading FasL. In isolated tubules ex vivo, MMP-7 promoted cell proliferation by degrading E-cadherin and thereby liberating β-catenin, priming renal tubules for regeneration. Taken together, these results suggest that induction of MMP-7 is protective in AKI by degrading FasL and mobilizing β-catenin, thereby priming kidney tubules for survival and regeneration.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Cameron GJM, Cautivo KM, Loering S, Jiang SH, Deshpande AV, Foster PS, McKenzie ANJ, Molofsky AB, Hansbro PM, Starkey MR. Group 2 Innate Lymphoid Cells Are Redundant in Experimental Renal Ischemia-Reperfusion Injury. Front Immunol 2019; 10:826. [PMID: 31057549 PMCID: PMC6477147 DOI: 10.3389/fimmu.2019.00826] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) can be fatal and is a well-defined risk factor for the development of chronic kidney disease. Group 2 innate lymphoid cells (ILC2s) are innate producers of type-2 cytokines and are critical regulators of homeostasis in peripheral organs. However, our knowledge of their function in the kidney is relatively limited. Recent evidence suggests that increasing ILC2 numbers by systemic administration of recombinant interleukin (IL)-25 or IL-33 protects against renal injury. Whilst ILC2s can be induced to protect against ischemic- or chemical-induced AKI, the impact of ILC2 deficiency or depletion on the severity of renal injury is unknown. Firstly, the phenotype and location of ILC2s in the kidney was assessed under homeostatic conditions. Kidney ILC2s constitutively expressed high levels of IL-5 and were located in close proximity to the renal vasculature. To test the functional role of ILC2s in the kidney, an experimental model of renal ischemia-reperfusion injury (IRI) was used and the severity of injury was assessed in wild-type, ILC2-reduced, ILC2-deficient, and ILC2-depleted mice. Surprisingly, there were no differences in histopathology, collagen deposition or mRNA expression of injury-associated (Lcn2), inflammatory (Cxcl1, Cxcl2, and Tnf) or extracellular matrix (Col1a1, Fn1) factors following IRI in the absence of ILC2s. These data suggest the absence of ILC2s does not alter the severity of renal injury, suggesting possible redundancy. Therefore, other mechanisms of type 2-mediated immune cell activation likely compensate in the absence of ILC2s. Hence, a loss of ILC2s is unlikely to increase susceptibility to, or severity of AKI.
Collapse
Affiliation(s)
- Guy J M Cameron
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Svenja Loering
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon H Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australia National University, Canberra, ACT, Australia.,Department of Renal Medicine, The Canberra Hospital, Canberra, ACT, Australia
| | - Aniruddh V Deshpande
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,The John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Paul S Foster
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Philip M Hansbro
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Centre for inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology, Ultimo, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
17
|
Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney Int 2019; 95:563-576. [PMID: 30670317 DOI: 10.1016/j.kint.2018.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) links the nervous and immune systems and modulates innate and adaptive immunity. Activation of the CAP by vagus nerve stimulation exerts protective effects in a wide variety of clinical disorders including rheumatoid arthritis and Crohn's disease, and in murine models of acute kidney injury including ischemia/reperfusion injury (IRI). The canonical CAP pathway involves activation of splenic alpha7-nicotinic acetylcholine receptor (α7nAChR)-positive macrophages by splenic β2-adrenergic receptor-positive CD4+ T cells. Here we demonstrate that ultrasound or vagus nerve stimulation also activated α7nAChR-positive peritoneal macrophages, and that adoptive transfer of these activated peritoneal macrophages reduced IRI in recipient mice. The protective effect required α7nAChR, and did not occur in splenectomized mice or in mice lacking T and B cells, suggesting a bidirectional interaction between α7nAChR-positive peritoneal macrophages and other immune cells including β2-adrenergic receptor-positive CD4+ T cells. We also found that expression of hairy and enhancer of split-1 (Hes1), a basic helix-loop-helix DNA-binding protein, is induced in peritoneal macrophages by ultrasound or vagus nerve stimulation. Adoptive transfer of Hes1-overexpressing peritoneal macrophages reduced kidney IRI. Our data suggest that Hes1 is downstream of α7nAChR and is important to fully activate the CAP. Taken together, these results suggest that peritoneal macrophages play a previously unrecognized role in mediating the protective effect of CAP activation in kidney injury, and that Hes1 is a new candidate pharmacological target to activate the CAP.
Collapse
|
18
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
Collapse
Affiliation(s)
- Yin-Wu Bao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuan Yuan
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China.
| | - Wei-Qiang Lin
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
19
|
Comparison of 99mTc-DMSA renal scintigraphy with biochemical and histopathological findings in animal models of acute kidney injury. Mol Cell Biochem 2017; 434:163-169. [DOI: 10.1007/s11010-017-3046-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 11/27/2022]
|
20
|
Wang L, Song J, Buggs J, Wei J, Wang S, Zhang J, Zhang G, Lu Y, Yip KP, Liu R. A new mouse model of hemorrhagic shock-induced acute kidney injury. Am J Physiol Renal Physiol 2016; 312:F134-F142. [PMID: 28042109 DOI: 10.1152/ajprenal.00347.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022] Open
Abstract
Current animal models of hemorrhagic shock-induced acute kidney injury (HS-induced AKI) require extensive surgical procedures and constant monitoring of hemodynamic parameters. Application of these HS-induced AKI models in mice to produce consistent kidney injury is challenging. In the present study, we developed a simple and highly reproducible mouse model of HS-induced AKI by combining moderate bleeding and renal pedicle clamping, which was abbreviated as HS-AKI. HS was induced by retroorbital bleeding of 0.4 ml blood in C57BL/6 mice. Mice were left in HS stage for 30 min, followed by renal pedicle clamping for 18 min at 36.8-37.0°C. Mean arterial pressure (MAP) and heart rate were monitored with preimplanted radio transmitters throughout the experiment. The acute response in renal blood flow (RBF) triggered by HS was measured with transonic flow probe. Mice received sham operation; bleeding alone and renal pedicle clamping alone served as respective controls. MAP was reduced from 77 ± 4 to 35 ± 3 mmHg after bleeding. RBF was reduced by 65% in the HS period. Plasma creatinine and kidney injury molecule-1 levels were increased by more than 22-fold 24 h after reperfusion. GFR was declined by 78% of baseline 3 days after reperfusion. Histological examination revealed a moderate-to-severe acute tubular damage, mostly at the cortex-medulla junction area, followed by the medullar and cortex regions. HS alone did not induce significant kidney injury, but synergistically enhanced pedicle clamping-induced AKI. This is a well-controlled, simple, and reliable mouse model of HS-AKI.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida;
| | - Jiangping Song
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Jin Wei
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Shaohui Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Gensheng Zhang
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lu
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Kay-Pong Yip
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
21
|
Santiago MJ, Fernández SN, Lázaro A, González R, Urbano J, López J, Solana MJ, Toledo B, del Castillo J, Tejedor A, López-Herce J. Cisplatin-Induced Non-Oliguric Acute Kidney Injury in a Pediatric Experimental Animal Model in Piglets. PLoS One 2016; 11:e0149013. [PMID: 26871589 PMCID: PMC4752347 DOI: 10.1371/journal.pone.0149013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Objective To design an experimental pediatric animal model of acute kidney injury induced by cisplatin. Methods Prospective comparative observational animal study in two different phases. Acute kidney injury was induced using three different doses of cisplatin (2, 3 and 5 mg/kg). The development of nephrotoxicity was assessed 2 to 4 days after cisplatin administration by estimating biochemical parameters, diuresis and renal morphology. Analytical values and renal morphology were compared between 15 piglets treated with cisplatin 3 mg/kg and 15 control piglets in the second phase of the study. Results 41 piglets were studied. The dose of 3 mg/kg administered 48 hours before the experience induced a significant increase in serum creatinine and urea without an increase in potassium levels. Piglets treated with cisplatin 3 mg/kg had significantly higher values of creatinine, urea, phosphate and amylase, less diuresis and lower values of potassium, sodium and bicarbonate than control piglets. Histological findings showed evidence of a dose-dependent increase in renal damage. Conclusions a dose of 3 mg/kg of cisplatin induces a significant alteration in renal function 48 hours after its administration, so it can be used as a pediatric animal model of non-oliguric acute kidney injury.
Collapse
Affiliation(s)
- Maria José Santiago
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Sarah Nicole Fernández
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Alberto Lázaro
- Laboratory of Renal Physiopathology, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rafael González
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Javier Urbano
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Jorge López
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Maria José Solana
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Blanca Toledo
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Jimena del Castillo
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Alberto Tejedor
- Complutense University of Madrid, Madrid, Spain
- Laboratory of Renal Physiopathology, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jesús López-Herce
- Paediatric Intensive Care Department. Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Spanish Health Institute Carlos III Maternal, Child Health and Development Network, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
22
|
Ranganathan P, Jayakumar C, Tang Y, Park KM, Teoh JP, Su H, Li J, Kim IM, Ramesh G. MicroRNA-150 deletion in mice protects kidney from myocardial infarction-induced acute kidney injury. Am J Physiol Renal Physiol 2015; 309:F551-8. [PMID: 26109086 DOI: 10.1152/ajprenal.00076.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
Despite greater understanding of acute kidney injury (AKI) in animal models, many of the preclinical studies are not translatable. Most of the data were derived from a bilateral renal pedicle clamping model with warm ischemia. However, ischemic injury of the kidney in humans is distinctly different and does not involve clamping of renal vessel. Permanent ligation of the left anterior descending coronary artery model was used to test the role of microRNA (miR)-150 in AKI. Myocardial infarction in this model causes AKI which is similar to human cardiac bypass surgery. Moreover, the time course of serum creatinine and biomarker elevation were also similar to human ischemic injury. Deletion of miR-150 suppressed AKI which was associated with suppression of inflammation and interstitial cell apoptosis. Immunofluorescence staining with endothelial marker and marker of apoptosis suggested that dying cells are mostly endothelial cells with minimal epithelial cell apoptosis in this model. Interestingly, deletion of miR-150 also suppressed interstitial fibrosis. Consistent with protection, miR-150 deletion causes induction of its target gene insulin-like growth factor-1 receptor (IGF-1R) and overexpression of miR-150 in endothelial cells downregulated IGF-1R, suggesting miR-150 may mediate its detrimental effects through suppression of IGF-1R pathways.
Collapse
Affiliation(s)
- Punithavathi Ranganathan
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Calpurnia Jayakumar
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Yaoping Tang
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Kyoung-mi Park
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Jian-peng Teoh
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Huabo Su
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Jie Li
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Il-man Kim
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Ganesan Ramesh
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| |
Collapse
|