1
|
Ana Beatriz DA, Rita MA, Miguel F, Rita GA, Luís GM. Fetal Aortic and Umbilical Doppler Flow Velocity Waveforms in Pregnancy: The Concept of Aortoumbilical Column. Curr Cardiol Rev 2023; 20:E101023222022. [PMID: 38441054 PMCID: PMC11071678 DOI: 10.2174/011573403x255256230919061018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 03/06/2024] Open
Abstract
Low impedance within the uteroplacental circulation is crucial for fetal development. Flow velocity waveforms (FVW) have been established for the aortic and umbilical arteries in low-risk pregnancies during the second half of pregnancy, but data regarding early gestation is limited. Both vascular territories exhibit higher impedance patterns in pregnancies complicated by fetal growth restriction (FGR), hypertensive disorders, fetal anemia, and chromosomal abnormalities. Early identification of these complications is critical in obstetric practice, to reduce perinatal morbidity and mortality through prevention and close antenatal surveillance. Available data suggest that aortic and umbilical impedances follow the same variation pattern as pregnancy progresses. This observation implies that both vessels may be considered as a single artery, referred to as the "aortoumbilical column". Our hypothesis posits that changes in the hemodynamic pattern of this column could identify high-risk pregnancies, particularly those complicated by preeclampsia, FGR, intrauterine fetal demise, fetal aneuploidies, and fetal anemia. Understanding vascular embryogenesis and the FVWs of the aortic and umbilical arteries enables comprehension of impedance changes throughout normal pregnancies. The continuous variation in impedance along a single vessel supports our concept of the aortoumbilical column. Deviations from the regular pattern could assist in identifying compromised fetuses during early pregnancy. Further research on normal aortoumbilical column FVW and the development of reference charts is necessary to consider this arterial column as a screening tool in clinical practice.
Collapse
Affiliation(s)
- De Almeida Ana Beatriz
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário de Santo António, University of Oporto, Oporto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Oporto, Oporto, Portugal
| | - Morais Ana Rita
- Instituto de Ciências Biomédicas Abel Salazar, University of Oporto, Oporto, Portugal
| | - Ferreira Miguel
- Instituto de Ciências Biomédicas Abel Salazar, University of Oporto, Oporto, Portugal
| | - Gaio Ana Rita
- Department of Mathematics, Faculty of Sciences, University of Oporto, Oporto, Portugal
| | - Guedes-Martins Luís
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário de Santo António, University of Oporto, Oporto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Oporto, Oporto, Portugal
- Fetal Medicine Centre, Centro Hospitalar Universitário de Santo António, University of Oporto, Oporto, Portugal
| |
Collapse
|
2
|
Yang Z, Li H, Wu P, Li Q, Yu C, Wang D, Li W. Multi-biological functions of intermedin in diseases. Front Physiol 2023; 14:1233073. [PMID: 37745233 PMCID: PMC10511904 DOI: 10.3389/fphys.2023.1233073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP)/calcitonin (CT) superfamily, and it is expressed extensively throughout the body. The typical receptors for IMD are complexes composed of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP), which leads to a biased activation towards Gαs. As a diagnostic and prognostic biomarker, IMD regulates the initiation and metastasis of multiple tumors. Additionally, IMD functions as a proangiogenic factor that can restrain excessive vascular budding and facilitate the expansion of blood vessel lumen, ultimately resulting in the fusion of blood vessels. IMD has protective roles in various diseases, including ischemia-reperfusion injury, metabolic disease, cardiovascular diseases and inflammatory diseases. This review systematically elucidates IMD's expression, structure, related receptors and signal pathway, as well as its comprehensive functions in the context of acute kidney injury, obesity, diabetes, heart failure and sepsis. However, the precise formation process of IMD short peptides in vivo and their downstream signaling pathway have not been fully elucidated yet. Further in-depth studies are need to translate IMD research into clinical applications.
Collapse
Affiliation(s)
- Zhi Yang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Yu
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Yvernogeau L, Dainese G, Jaffredo T. Dorsal aorta polarization and haematopoietic stem cell emergence. Development 2023; 150:286251. [PMID: 36602140 DOI: 10.1242/dev.201173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies have highlighted the crucial role of the aorta microenvironment in the generation of the first haematopoietic stem cells (HSCs) from specialized haemogenic endothelial cells (HECs). Despite more than two decades of investigations, we require a better understanding of the cellular and molecular events driving aorta formation and polarization, which will be pivotal to establish the mechanisms that operate during HEC specification and HSC competency. Here, we outline the early mechanisms involved in vertebrate aorta formation by comparing four different species: zebrafish, chicken, mouse and human. We highlight how this process, which is tightly controlled in time and space, requires a coordinated specification of several cell types, in particular endothelial cells originating from distinct mesodermal tissues. We also discuss how molecular signals originating from the aorta environment result in its polarization, creating a unique entity for HSC generation.
Collapse
Affiliation(s)
- Laurent Yvernogeau
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Giovanna Dainese
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Thierry Jaffredo
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| |
Collapse
|
4
|
Furuta A, Futagami D, Morimoto H, Kitaura J, Mukai S. Arteriovenous malformation with pseudoaneurysm on the left upper limb. Clin Case Rep 2022; 10:e6026. [PMID: 35846916 PMCID: PMC9272232 DOI: 10.1002/ccr3.6026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/02/2022] [Accepted: 06/25/2022] [Indexed: 11/12/2022] Open
Abstract
A 61-year-old woman developed a pulsatile mass on the left upper limb and was diagnosed with arteriovenous malformation with pseudoaneurysm. A two-stage operation including ligation and resection of the aberrant branches and subsequent resection of the mass with revascularization was performed. Histological analysis suggested arteriovenous malformation and pseudoaneurysm.
Collapse
Affiliation(s)
- Akihisa Furuta
- Department of Cardiovascular SurgeryFukuyama Cardiovascular HospitalHiroshimaJapan
| | - Daisuke Futagami
- Department of Cardiovascular SurgeryFukuyama Cardiovascular HospitalHiroshimaJapan
| | - Hironobu Morimoto
- Department of Cardiovascular SurgeryFukuyama Cardiovascular HospitalHiroshimaJapan
| | - Junya Kitaura
- Department of Cardiovascular SurgeryFukuyama Cardiovascular HospitalHiroshimaJapan
| | - Shogo Mukai
- Department of Cardiovascular SurgeryFukuyama Cardiovascular HospitalHiroshimaJapan
| |
Collapse
|
5
|
Kasherman L, Liu S(L, Karakasis K, Lheureux S. Angiogenesis: A Pivotal Therapeutic Target in the Drug Development of Gynecologic Cancers. Cancers (Basel) 2022; 14:1122. [PMID: 35267430 PMCID: PMC8908988 DOI: 10.3390/cancers14051122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Since the discovery of angiogenesis and its relevance to the tumorigenesis of gynecologic malignancies, a number of therapeutic agents have been developed over the last decade, some of which have become standard treatments in combination with other therapies. Limited clinical activity has been demonstrated with anti-angiogenic monotherapies, and ongoing trials are focused on combination strategies with cytotoxic agents, immunotherapies and other targeted treatments. This article reviews the science behind angiogenesis within the context of gynecologic cancers, the evidence supporting the targeting of these pathways and future directions in clinical trials.
Collapse
Affiliation(s)
- Lawrence Kasherman
- Department of Medical Oncology, St. George Hospital, Kogarah, NSW 2217, Australia;
- St. George and Sutherland Clinical Schools, University of New South Wales, Sydney, NSW 2052, Australia
- Illawarra Cancer Care Centre, Department of Medical Oncology, Wollongong, NSW 2500, Australia
| | | | | | - Stephanie Lheureux
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
6
|
Magnussen AL, Mills IG. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br J Cancer 2021; 125:324-336. [PMID: 33828258 PMCID: PMC8329166 DOI: 10.1038/s41416-021-01330-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/17/2021] [Accepted: 02/17/2021] [Indexed: 02/01/2023] Open
Abstract
A functional vascular system is indispensable for drug delivery and fundamental for responsiveness of the tumour microenvironment to such medication. At the same time, the progression of a tumour is defined by the interactions of the cancer cells with their surrounding environment, including neovessels, and the vascular network continues to be the major route for the dissemination of tumour cells in cancer, facilitating metastasis. So how can this apparent conflict be reconciled? Vessel normalisation-in which redundant structures are pruned and the abnormal vasculature is stabilised and remodelled-is generally considered to be beneficial in the course of anti-cancer treatments. A causality between normalised vasculature and improved response to medication and treatment is observed. For this reason, it is important to discern the consequence of vessel normalisation on the tumour microenvironment and to modulate the vasculature advantageously. This article will highlight the challenges of controlled neovascular remodelling and outline how vascular normalisation can shape disease management.
Collapse
Affiliation(s)
- Anette L Magnussen
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK.
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Jawed Y, Beli E, March K, Kaleth A, Loghmani MT. Whole-Body Vibration Training Increases Stem/Progenitor Cell Circulation Levels and May Attenuate Inflammation. Mil Med 2020; 185:404-412. [PMID: 32074302 DOI: 10.1093/milmed/usz247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Whole-body vibration training (WBVT) may benefit individuals with difficulty participating in physical exercise. The objective was to explore the effects of WBVT on circulating stem/progenitor cell (CPC) and cytokine levels. METHODS Healthy male subjects each performed three activities randomly on separate days: (1) standing platform vibration, (2) repetitive leg squat exercise; and (3) in combination. Pre- and post-activity blood samples were drawn. Cell populations were characterized using flow cytometry. Biomarkers were analyzed using enzyme-linked immunosorbent assays. RESULTS CPC levels increased significantly 21% with exercise alone (1465 ± 202-1770 ± 221 cells/mL; P = 0.017) and 33% with vibration alone in younger participants (1918 ± 341-2559 ± 496; P = 0.02). Angiogenic CPCs increased 39% during combined activity in younger (633 ± 128-882 ± 181; P = 0.05). Non-angiogenic CPCs increased 42% with vibration alone in younger (1181 ± 222-1677 ± 342; P = 0.04), but 32% with exercise alone in older participants (801 ± 251-1053 ± 325; P = 0.05). With vibration alone, anti-inflammatory cytokine interleukin-10 increased significantly (P < 0.03), although inflammatory interleukin-6 decreased (P = 0.056); tumor necrosis factor-alpha (P < 0.01) and vascular endothelial growth factor levels increased (P < 0.005), which are synergistically pro-angiogenic. CONCLUSIONS WBVT may have positive vascular and anti-inflammatory effects. WBVT could augment or serve as an exercise surrogate in warfighters and others who cannot fully participate in exercise programs, having important implications in military health.
Collapse
Affiliation(s)
- Yameena Jawed
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, 541 Clinical Dr., CL 260, Indianapolis, IN 46202
| | - Eleni Beli
- Indiana Diabetes Research Center, School of Medicine, Indiana University, 635 Barnhill Dr., MS 2031A, Indianapolis, IN 46202
| | - Keith March
- Center for Regenerative Medicine, College of Medicine, University of Florida, M-108 Health Science Center, P.O. Box 100216, Gainesville, FL 32610
| | - Anthony Kaleth
- Department of Kinesiology, School of Health and Human Sciences, Indiana University, 901 W. New York Street, Indianapolis, IN 46202
| | - M Terry Loghmani
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, 1140 W. Michigan Street, CF320A, Indianapolis, IN 46202
| |
Collapse
|
8
|
Díaz del Moral S, Barrena S, Muñoz-Chápuli R, Carmona R. Embryonic circulating endothelial progenitor cells. Angiogenesis 2020; 23:531-541. [DOI: 10.1007/s10456-020-09732-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
|
9
|
Vargas-Valderrama A, Messina A, Mitjavila-Garcia MT, Guenou H. The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. J Biomed Sci 2020; 27:67. [PMID: 32443983 PMCID: PMC7245026 DOI: 10.1186/s12929-020-00661-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Over the last 4 decades, cell culture techniques have evolved towards the creation of in vitro multicellular entities that incorporate the three-dimensional complexity of in vivo tissues and organs. As a result, stem cells and adult progenitor cells have been used to derive self-organized 3D cell aggregates that mimic the morphological and functional traits of organs in vitro. These so-called organoids were first generated from primary animal and human tissues, then human pluripotent stem cells (hPSCs) arose as a new tool for organoid generation. Due to their self-renewal capacity and differentiation potential, hPSCs are an unlimited source of cells used for organoids. Today, hPSC-derived small intestinal, kidney, brain, liver, and pancreas organoids, among others, have been produced and are promising in vitro human models for diverse applications, including fundamental research, drug development and regenerative medicine. However, achieving in vivo-like organ complexity and maturation in vitro remains a challenge. Current hPSC-derived organoids are often limited in size and developmental state, resembling embryonic or fetal organs rather than adult organs. The use of endothelial cells to vascularize hPSC-derived organoids may represent a key to ensuring oxygen and nutrient distribution in large organoids, thus contributing to the maturation of adult-like organoids through paracrine signaling.Here, we review the current state of the art regarding vascularized hPSC-derived organoids (vhPSC-Orgs). We analyze the progress achieved in the generation of organoids derived from the three primary germ layers (endoderm, mesoderm and ectoderm) exemplified by the pancreas, liver, kidneys and brain. Special attention will be given to the role of the endothelium in the organogenesis of the aforementioned organs, the sources of endothelial cells employed in vhPSC-Org protocols and the remaining challenges preventing the creation of ex vivo functional and vascularized organs.
Collapse
Affiliation(s)
- Alejandra Vargas-Valderrama
- INSERM UMRS-MD 1197, Université Paris Sud-Université Paris-Saclay. Hôpital Paul Brousse, Villejuif, France
- DHU Hépatinov, Villejuif, France
| | - Antonietta Messina
- DHU Hépatinov, Villejuif, France
- UMR_S1193 Inserm. Université Paris-Saclay, Villejuif, France
| | - Maria Teresa Mitjavila-Garcia
- INSERM UMRS-MD 1197, Université Paris Sud-Université Paris-Saclay. Hôpital Paul Brousse, Villejuif, France
- DHU Hépatinov, Villejuif, France
| | - Hind Guenou
- INSERM UMRS-MD 1197, Université Paris Sud-Université Paris-Saclay. Hôpital Paul Brousse, Villejuif, France
- DHU Hépatinov, Villejuif, France
- Université d’Evry-Val-d’Essonne. Université Paris-Saclay, Evry, France
| |
Collapse
|
10
|
Jalilian E, Elkin K, Shin SR. Novel Cell-Based and Tissue Engineering Approaches for Induction of Angiogenesis as an Alternative Therapy for Diabetic Retinopathy. Int J Mol Sci 2020; 21:E3496. [PMID: 32429094 PMCID: PMC7278952 DOI: 10.3390/ijms21103496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of long-term diabetes and the most common cause of blindness, increasing morbidity in the working-age population. The most effective therapies for these complications include laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections. However, laser and anti-VEGF drugs are untenable as a final solution as they fail to address the underlying neurovascular degeneration and ischemia. Regenerative medicine may be a more promising approach, aimed at the repair of blood vessels and reversal of retinal ischemia. Stem cell therapy has introduced a novel way to reverse the underlying ischemia present in microvascular complications in diseases such as diabetes. The present review discusses current treatments, their side effects, and novel cell-based and tissue engineering approaches as a potential alternative therapeutic approach.
Collapse
Affiliation(s)
- Elmira Jalilian
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Kenneth Elkin
- Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA;
| |
Collapse
|
11
|
BA-12 Inhibits Angiogenesis via Glutathione Metabolism Activation. Int J Mol Sci 2019; 20:ijms20164062. [PMID: 31434286 PMCID: PMC6720627 DOI: 10.3390/ijms20164062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 01/09/2023] Open
Abstract
There is a need for an efficient and low-cost leading compound discovery mode. However, drug development remains slow, expensive, and risky. Here, this manuscript proposes a leading compound discovery strategy based on a combination of traditional Chinese medicine (TCM) formulae and pharmacochemistry, using a ligustrazine-betulinic acid derivative (BA-12) in the treatment of angiogenesis as an example. Blocking angiogenesis to inhibit the growth and metastasis of solid tumors is currently one recognized therapy for cancer in the clinic. Firstly, based on a traditional Prunella vulgaris plaster, BA-12 was synthesized according to our previous study, as it exhibited better antitumor activities than other derivatives on human bladder carcinoma cells (T24); it was then uploaded for target prediction. Secondly, the efficacy and biotoxicity of BA-12 on angiogenesis were evaluated using human umbilical vein endothelial cells (HUVECs), a quail chick chorioallantoic membrane, and Caenorhabditis elegans. According to the prediction results, the main mechanisms of BA-12 were metabolic pathways. Thus, multiple metabolomics approaches were applied to reveal the mechanisms of BA-12. Finally, the predictive mechanisms of BA-12 on glutathione metabolism and glycerophospholipid metabolism activation were validated using targeted metabolomics and pharmacological assays. This strategy may provide a reference for highly efficient drug discovery, with the aim of sharing TCM wisdom for unmet clinical needs.
Collapse
|
12
|
Biological function of SPNS2: From zebrafish to human. Mol Immunol 2018; 103:55-62. [DOI: 10.1016/j.molimm.2018.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023]
|
13
|
Eldridge L, Wagner EM. Angiogenesis in the lung. J Physiol 2018; 597:1023-1032. [PMID: 30022479 DOI: 10.1113/jp275860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Both systemic (tracheal and bronchial) and pulmonary circulations perfuse the lung. However, documentation of angiogenesis of either is complicated by the presence of the other. Well-documented angiogenesis of the systemic circulations have been identified in asthma, cystic fibrosis, chronic thromboembolism and primary carcinomas. Angiogenesis of the vasa vasorum, which are branches of bronchial arteries, is seen in the walls of large pulmonary vessels after a period of chronic hypoxia. Documentation of increased pulmonary capillaries has been shown in models of chronic hypoxia, after pneumonectomy and in some carcinomas. Although endothelial cell proliferation may occur as part of the repair process in several pulmonary diseases, it is separate from the unique establishment of new functional perfusing networks defined as angiogenesis. Identification of the mechanisms driving the expansion of new vascular beds in the adult needs further investigation. Yet the growth factors and molecular mechanisms of lung angiogenesis remain difficult to separate from underlying disease sequelae.
Collapse
Affiliation(s)
- Lindsey Eldridge
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M Wagner
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Petrova ES. Differentiation Potential of Mesenchymal Stem Cells and Stimulation of Nerve Regeneration. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418040033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Neeman M. Perspectives: MRI of angiogenesis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:99-105. [PMID: 29705037 PMCID: PMC6542363 DOI: 10.1016/j.jmr.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 05/07/2023]
Abstract
Angiogenesis, the expansion of the vascular bed, is an important component in remodeling of tissues and organs. Such remodeling is essential for coping with substantial and sustained increase in the demands for supply of oxygen and nutrients and the timely removal of waste products. The vasculature, and its effectiveness in systemic delivery to all parts of the body, regulates the distribution of immune cells and the delivery of therapeutics as well as the dissemination of disease. Therefore, the vascular bed is possibly one of the key organs involved in homeostasis, in health and disease. The critical role of the vasculature in health, and the accessibility to non invasive probing by MRI, renders MRI as a modality of choice for monitoring the vasculature and its adaption to challenges.
Collapse
Affiliation(s)
- Michal Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
16
|
Reckmann AN, Tomczyk CUM, Davidoff MS, Michurina TV, Arnhold S, Müller D, Mietens A, Middendorff R. Nestin in the epididymis is expressed in vascular wall cells and is regulated during postnatal development and in case of testosterone deficiency. PLoS One 2018; 13:e0194585. [PMID: 29874225 PMCID: PMC5991371 DOI: 10.1371/journal.pone.0194585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/06/2018] [Indexed: 12/24/2022] Open
Abstract
Vascular smooth muscle cells (SMCs), distinguished by the expression of the neuronal stem cell marker nestin, may represent stem cell-like progenitor cells in various organs including the testis. We investigated epididymal tissues of adult nestin-GFP mice, rats after Leydig cell depletion via ethane dimethane sulfonate (EDS), rats and mice during postnatal development and human tissues. By use of Clarity, a histochemical method to illustrate a three-dimensional picture, we could demonstrate nestin-GFP positive cells within the vascular network. We localized nestin in the epididymis in proliferating vascular SMCs by colocalization with both smooth muscle actin and PCNA, and it was distinct from CD31-positive endothelial cells. The same nestin localization was found in the human epididymis. However, nestin was not found in SMCs of the epididymal duct. Nestin expression is high during postnatal development of mouse and rat and down-regulated towards adulthood when testosterone levels increase. Nestin increases dramatically in rats after Leydig cell ablation with EDS and subsequently low testosterone levels. Interestingly, during this period, the expression of androgen receptor in the epididymis is low and increases until nestin reaches normal levels of adulthood. Here we show that nestin, a common marker for neuronal stem cells, is also expressed in the vasculature of the epididymis. Our results give new insights into the yet underestimated role of proliferating nestin-expressing vascular SMCs during postnatal development and repair of the epididymis.
Collapse
Affiliation(s)
- Ansgar N Reckmann
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Claudia U M Tomczyk
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michail S Davidoff
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatyana V Michurina
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States of America
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
17
|
Ibrahim M, Richardson MK. Beyond organoids: In vitro vasculogenesis and angiogenesis using cells from mammals and zebrafish. Reprod Toxicol 2017; 73:292-311. [PMID: 28697965 DOI: 10.1016/j.reprotox.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
The ability to culture complex organs is currently an important goal in biomedical research. It is possible to grow organoids (3D organ-like structures) in vitro; however, a major limitation of organoids, and other 3D culture systems, is the lack of a vascular network. Protocols developed for establishing in vitro vascular networks typically use human or rodent cells. A major technical challenge is the culture of functional (perfused) networks. In this rapidly advancing field, some microfluidic devices are now getting close to the goal of an artificially perfused vascular network. Another development is the emergence of the zebrafish as a complementary model to mammals. In this review, we discuss the culture of endothelial cells and vascular networks from mammalian cells, and examine the prospects for using zebrafish cells for this objective. We also look into the future and consider how vascular networks in vitro might be successfully perfused using microfluidic technology.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, The Netherlands; Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Michael K Richardson
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, The Netherlands.
| |
Collapse
|
18
|
Roberts MA, Kotha SS, Phong KT, Zheng Y. Micropatterning and Assembly of 3D Microvessels. J Vis Exp 2016. [PMID: 27685466 DOI: 10.3791/54457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vitro platforms to study endothelial cells and vascular biology are largely limited to 2D endothelial cell culture, flow chambers with polymer or glass based substrates, and hydrogel-based tube formation assays. These assays, while informative, do not recapitulate lumen geometry, proper extracellular matrix, and multi-cellular proximity, which play key roles in modulating vascular function. This manuscript describes an injection molding method to generate engineered vessels with diameters on the order of 100 µm. Microvessels are fabricated by seeding endothelial cells in a microfluidic channel embedded within a native type I collagen hydrogel. By incorporating parenchymal cells within the collagen matrix prior to channel formation, specific tissue microenvironments can be modeled and studied. Additional modulations of hydrodynamic properties and media composition allow for control of complex vascular function within the desired microenvironment. This platform allows for the study of perivascular cell recruitment, blood-endothelium interactions, flow response, and tissue-microvascular interactions. Engineered microvessels offer the ability to isolate the influence from individual components of a vascular niche and precisely control its chemical, mechanical, and biological properties to study vascular biology in both health and disease.
Collapse
Affiliation(s)
| | - Surya S Kotha
- Department of Bioengineering, University of Washington
| | - Kiet T Phong
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington
| | - Ying Zheng
- Department of Bioengineering, University of Washington; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington;
| |
Collapse
|
19
|
Ulvmar MH, Mäkinen T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res 2016; 111:310-21. [PMID: 27357637 PMCID: PMC4996263 DOI: 10.1093/cvr/cvw175] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Lymphatic vessels have historically been viewed as passive conduits for fluid and immune cells, but this perspective is increasingly being revised as new functions of lymphatic vessels are revealed. Emerging evidence shows that lymphatic endothelium takes an active part in immune regulation both by antigen presentation and expression of immunomodulatory genes. In addition, lymphatic vessels play an important role in uptake of dietary fat and clearance of cholesterol from peripheral tissues, and they have been implicated in obesity and arteriosclerosis. Lymphatic vessels within different organs and in different physiological and pathological processes show a remarkable plasticity and heterogeneity, reflecting their functional specialization. In addition, lymphatic endothelial cells (LECs) of different organs were recently shown to have alternative developmental origins, which may contribute to the development of the diverse lymphatic vessel and endothelial functions seen in the adult. Here, we discuss recent developments in the understanding of heterogeneity within the lymphatic system considering the organ-specific functional and molecular specialization of LECs and their developmental origin.
Collapse
Affiliation(s)
- Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 85 Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 85 Uppsala, Sweden
| |
Collapse
|