1
|
Behera DP, Subadini S, Freudenberg U, Sahoo H. Sulfation of hyaluronic acid reconfigures the mechanistic pathway of bone morphogenetic protein-2 aggregation. Int J Biol Macromol 2024; 263:130128. [PMID: 38350587 DOI: 10.1016/j.ijbiomac.2024.130128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a critical growth factor of bone extracellular matrix (ECM), pivotal for osteogenesis. Glycosaminoglycans (GAGs), another vital ECM biomolecules, interact with growth factors, affecting signal transduction. Our study primarily focused on hyaluronic acid (HA), a prevalent GAG, and its sulfated derivative (SHA). We explored their impact on BMP-2's conformation, aggregation, and mechanistic pathways of aggregation using diverse optical and rheological methods. In the presence of HA and SHA, the secondary structure of BMP-2 underwent a structured transformation, characterized by a substantial increase in beta sheet content, and a detrimental alteration, manifesting as a shift towards unstructured content, respectively. Although both HA and SHA induced BMP-2 aggregation, their mechanisms differed. SHA led to rapid amorphous aggregates, while HA promoted amyloid fibrils with a lag phase and sigmoidal kinetics. Aggregate size and shape varied; HA produced larger structures, SHA smaller. Each aggregation type followed distinct pathways influenced by viscosity and excluded volume. Higher viscosity, low diffusivity of protein and higher excluded volume In the presence of HA promotes fibrillation having size in micrometer range. Low viscosity, high diffusivity of protein and lesser excluded volume leads to amorphous aggregate of size in nanometer range.
Collapse
Affiliation(s)
- Devi Prasanna Behera
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Suchismita Subadini
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Uwe Freudenberg
- Institute of Polymer Research, Technical University Dresden, 01307 Dresden, Germany
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India; Center for Nanomaterials, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Marichal L, Bagnard L, Sire O, Vendrely C, Bruckert F, Weidenhaupt M. Phenol-soluble modulins form amyloids in contact with multiple surface chemistries. Biochim Biophys Acta Gen Subj 2023; 1867:130450. [PMID: 37640168 DOI: 10.1016/j.bbagen.2023.130450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Functional amyloids are commonly produced by many microorganisms and their biological functions are numerous. Staphylococcus aureus can secrete a group of peptides named phenol-soluble modulins (PSMs) in their biofilm extracellular matrix. PSMs have been found inside biofilms both in their soluble form and assembled into amyloid structures. Yet, the actual biological function of these amyloids has been highly debated. Here, we assessed the ability of PSMs to form amyloids in contact with different abiotic surfaces to unravel a potential unknown bioadhesive and/or biofilm stabilization function. We combined surface plasmon resonance imaging, fluorescence aggregation kinetics, and FTIR spectroscopy in order to evaluate the PSM adsorption as well as amyloid formation properties in the presence of various surface chemistries. Overall, PSMs adsorb even on low-binding surfaces, making them highly adaptable adsorbants in the context of bioadhesion. Moreover, the PSM aggregation potential to form amyloid aggregates is not impacted by the presence of the surface chemistries tested. This versatility regarding adsorption and amyloid formation may imply a possible role of PSMs in biofilm adhesion and/or structure integrity.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Grenoble Alpes, CNRS, Grenoble-INP LMGP, Grenoble F-38000, France
| | - Lucie Bagnard
- Université Grenoble Alpes, CNRS, Grenoble-INP LMGP, Grenoble F-38000, France
| | - Olivier Sire
- IRDL, UMR CNRS 6027, Université Bretagne Sud, Vannes, France
| | - Charlotte Vendrely
- Université Grenoble Alpes, CNRS, Grenoble-INP LMGP, Grenoble F-38000, France
| | - Franz Bruckert
- Université Grenoble Alpes, CNRS, Grenoble-INP LMGP, Grenoble F-38000, France
| | | |
Collapse
|
3
|
Mitra A, Sarkar N. Elucidating the inhibitory effects of rationally designed novel hexapeptide against hen egg white lysozyme fibrillation at acidic and physiological pH. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140899. [PMID: 36693516 DOI: 10.1016/j.bbapap.2023.140899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/23/2023]
Abstract
Inhibition of highly ordered cross-β-sheet-rich aggregates of misfolded amyloid proteins using rationally designed sequence-based short peptides is a promising therapeutic strategy for the treatment of neurodegenerative diseases. Here, we have explored the anti-amyloidogenic potency of a rationally designed hexapeptide (Tyr-Pro-Gln-Ile-Pro-Asn) on in vitro hen egg white lysozyme (HEWL) amyloid fibril formation at acidic pH and physiological pH using computational docking as well as various biophysical techniques such as fluorescence spectroscopy, UV-vis spectroscopy, FTIR spectroscopy, confocal microscopy and TEM. The peptide was designed based on the aggregation-prone region (APR) of HEWL and thus referred to as SqP1 (Sequence-based Peptide 1). SqP1 showed over 70% inhibition of HEWL amyloid formation at pH 2.2 and approximately 50% inhibition at pH 7.5. We propose that SqP1 binds to the APR of HEWL and interacts strongly with the Trp62/Trp63, ultimately stabilizing monomeric HEWL at both the pH conditions and preventing conformation changes in the structure of HEWL, leading to the formation of amyloidogenic fibrillar structures. A sequence-based peptide inhibitor of HEWL amyloid formation was not reported previously, making this a critical study that will further emphasize the importance of short synthetic peptides as amyloid inhibitors.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
4
|
Impaired Extracellular Proteostasis in Patients with Heart Failure. Arch Med Res 2023; 54:211-222. [PMID: 36797157 DOI: 10.1016/j.arcmed.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Proteostasis impairment and the consequent increase of amyloid burden in the myocardium have been associated with heart failure (HF) development and poor prognosis. A better knowledge of the protein aggregation process in biofluids could assist the development and monitoring of tailored interventions. AIM To compare the proteostasis status and protein's secondary structures in plasma samples of patients with HF with preserved ejection fraction (HFpEF), patients with HF with reduced ejection fraction (HFrEF), and age-matched individuals. METHODS A total of 42 participants were enrolled in 3 groups: 14 patients with HFpEF, 14 patients with HFrEF, and 14 age-matched individuals. Proteostasis-related markers were analyzed by immunoblotting techniques. Fourier Transform Infrared (FTIR) Spectroscopy in Attenuated Total Reflectance (ATR) was applied to assess changes in the protein's conformational profile. RESULTS Patients with HFrEF showed an elevated concentration of oligomeric proteic species and reduced clusterin levels. ATR-FTIR spectroscopy coupled with multivariate analysis allowed the discrimination of HF patients from age-matched individuals in the protein amide I absorption region (1700-1600 cm-1), reflecting changes in protein conformation, with a sensitivity of 73 and a specificity of 81%. Further analysis of FTIR spectra showed significantly reduced random coils levels in both HF phenotypes. Also, compared to the age-matched group, the levels of structures related to fibril formation were significantly increased in patients with HFrEF, whereas the β-turns were significantly increased in patients with HFpEF. CONCLUSION Both HF phenotypes showed a compromised extracellular proteostasis and different protein conformational changes, suggesting a less efficient protein quality control system.
Collapse
|
5
|
Restrepo-Pineda, Rosiles-BecerrilVargas-Castillo D, Ávila-Barrientos LP, Luviano A, Sánchez-Puig N, García-Hernández E, Pérez NO, Trujillo-Roldán MA, Valdez-Cruz NA. Induction temperature impacts the structure of recombinant HuGM-CSF inclusion bodies in thermoinducible E. coli. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Singh R, Kundu P, Bhattacharje G, Das AK. Mycobacterium tuberculosis low molecular weight T-cell antigen Mtb8.4 has heme-binding and fiber-forming properties. FEBS Lett 2022; 596:2678-2695. [PMID: 35795993 DOI: 10.1002/1873-3468.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
Mtb8.4, a secretory T-cell antigen of Mycobacterium tuberculosis, is important for providing an antigen-specific immune response. In this study, we showed Mtb8.4 to have both heme-binding and fibril-forming properties, using experimental and in silico methods. High absorbance at 410 nm and interaction with hemin-agarose demonstrated its heme-binding nature. Titration of Mtb8.4 with heme resulted in 1:1 stoichiometry. The heme-binding pocket in Mtb8.4 was identified by molecular modeling, and binding residues were predicted using molecular docking. The molecular dynamics simulations of apo- and heme-bound Mtb8.4 confirmed that the heme group forms a stable complex. Transmission electron microscopy analyses and dye-binding assays showed that Mtb8.4 forms fibers. Computational studies predicted that the C-terminal sequence (93 AAQYIGLVESV103 ) is important for forming fibers. In silico analyses further anticipated the probable epitope (82 AMAAQLQAV90 ) of Mtb8.4. The fiber-forming properties of Mtb8.4 could be advantageous from a vaccine perspective for aggregate/fibril-based vaccine delivery or it might influence the epitope presentation of Mtb8.4.
Collapse
Affiliation(s)
- Rashika Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Prasun Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
7
|
Ami D, Mereghetti P, Natalello A. Contribution of Infrared Spectroscopy to the Understanding of Amyloid Protein Aggregation in Complex Systems. Front Mol Biosci 2022; 9:822852. [PMID: 35463965 PMCID: PMC9023755 DOI: 10.3389/fmolb.2022.822852] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Infrared (IR) spectroscopy is a label-free and non-invasive technique that probes the vibrational modes of molecules, thus providing a structure-specific spectrum. The development of infrared spectroscopic approaches that enable the collection of the IR spectrum from a selected sample area, from micro- to nano-scale lateral resolutions, allowed to extend their application to more complex biological systems, such as intact cells and tissues, thus exerting an enormous attraction in biology and medicine. Here, we will present recent works that illustrate in particular the applications of IR spectroscopy to the in situ characterization of the conformational properties of protein aggregates and to the investigation of the other biomolecules surrounding the amyloids. Moreover, we will discuss the potential of IR spectroscopy to the monitoring of cell perturbations induced by protein aggregates. The essential support of multivariate analyses to objectively pull out the significant and non-redundant information from the spectra of highly complex systems will be also outlined.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- *Correspondence: Diletta Ami, ; Antonino Natalello,
| | | | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- *Correspondence: Diletta Ami, ; Antonino Natalello,
| |
Collapse
|
8
|
Mangiagalli M, Ami D, de Divitiis M, Brocca S, Catelani T, Natalello A, Lotti M. Short-chain alcohols inactivate an immobilized industrial lipase through two different mechanisms. Biotechnol J 2022; 17:e2100712. [PMID: 35188703 DOI: 10.1002/biot.202100712] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 11/07/2022]
Abstract
Broadly used in biocatalysis as acyl acceptors or (co)-solvents, short-chain alcohols often cause irreversible loss of enzyme activity. Understanding the mechanisms of inactivation is a necessary step toward the optimization of biocatalytic reactions and the design of enzyme-based sustainable processes. In this work, we explored the functional and structural response of an immobilized enzyme, Novozym 435, exposed to methanol, ethanol, and tert-butanol. N-435 consists of Candida antarctica lipase B (CALB) adsorbed on polymethacrylate beads and finds application in a variety of processes involving the presence of short-chain alcohols. The nature of the N-435 material required the development of an ad hoc method of structural analysis, based on Fourier transform infrared microspectroscopy, which was complemented by catalytic activity assays and by morphological observation by transmission electron microscopy. We found that the inactivation of N-435 is highly dependent on alcohol concentration and occurs through two different mechanisms. Short-chain alcohols induce conformational changes leading to CALB aggregation, which is only partially prevented by immobilization. Moreover, alcohol modifies the texture of the solid support promoting the enzyme release. Overall, knowledge of the molecular mechanisms underlying Novozym 435 inactivation induced by short-chain alcohols promises to overcome the limitations that usually occur during industrial processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marcella de Divitiis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Tiziano Catelani
- Microscopy Facility, University of Milano-Bicocca, Milan, 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
9
|
Ami D, Natalello A. Characterization of the Conformational Properties of Soluble and Insoluble Proteins by Fourier Transform Infrared Spectroscopy. Methods Mol Biol 2022; 2406:439-454. [PMID: 35089573 DOI: 10.1007/978-1-0716-1859-2_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The FTIR (micro-)spectroscopy method applied to the study of the structural properties of different soluble and insoluble proteins will be illustrated. In particular, we will discuss the procedure to analyze proteins in form of hydrated films and in solution by means of attenuated total reflection (ATR) measurements. Moreover, we will describe the procedure to characterize bacterial inclusion bodies (IBs) and amyloid deposits within human tissues by means of FTIR microspectroscopy.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
10
|
Pathological ATX3 Expression Induces Cell Perturbations in E. coli as Revealed by Biochemical and Biophysical Investigations. Int J Mol Sci 2021; 22:ijms22020943. [PMID: 33477953 PMCID: PMC7835732 DOI: 10.3390/ijms22020943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Amyloid aggregation of human ataxin-3 (ATX3) is responsible for spinocerebellar ataxia type 3, which belongs to the class of polyglutamine neurodegenerative disorders. It is widely accepted that the formation of toxic oligomeric species is primarily involved in the onset of the disease. For this reason, to understand the mechanisms underlying toxicity, we expressed both a physiological (ATX3-Q24) and a pathological ATX3 variant (ATX3-Q55) in a simplified cellular model, Escherichia coli. It has been observed that ATX3-Q55 expression induces a higher reduction of the cell growth compared to ATX3-Q24, due to the bacteriostatic effect of the toxic oligomeric species. Furthermore, the Fourier transform infrared microspectroscopy investigation, supported by multivariate analysis, made it possible to monitor protein aggregation and the induced cell perturbations in intact cells. In particular, it has been found that the toxic oligomeric species associated with the expression of ATX3-Q55 are responsible for the main spectral changes, ascribable mainly to the cell envelope modifications. A structural alteration of the membrane detected through electron microscopy analysis in the strain expressing the pathological form supports the spectroscopic results.
Collapse
|
11
|
Zaman M, Andreasen M. Modulating Kinetics of the Amyloid-Like Aggregation of S. aureus Phenol-Soluble Modulins by Changes in pH. Microorganisms 2021; 9:microorganisms9010117. [PMID: 33430169 PMCID: PMC7825627 DOI: 10.3390/microorganisms9010117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
The pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently identified phenol-soluble modulin (PSM) peptides act as the key molecular effectors of staphylococcal biofilm maturation and promote the formation of an aggregated fibril structure. The aim of this study was to evaluate the effect of various pH values on the formation of functional amyloids of individual PSM peptides. Here, we combined a range of biophysical, chemical kinetics and microscopic techniques to address the structure and aggregation mechanism of individual PSMs under different conditions. We established that there is a pH-induced switch in PSM aggregation kinetics. Different lag times and growth of fibrils were observed, which indicates that there was no clear correlation between the rates of fibril elongation among different PSMs. This finding confirms that pH can modulate the aggregation properties of these peptides and suggest a deeper understanding of the formation of aggregates, which represents an important basis for strategies to interfere and might help in reducing the risk of biofilm-related infections.
Collapse
|
12
|
Characterization of Insulin Mucoadhesive Buccal Films: Spectroscopic Analysis and In Vivo Evaluation. Symmetry (Basel) 2021. [DOI: 10.3390/sym13010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Insulin mucoadhesive buccal films (MBF) are a noninvasive insulin delivery system that offers an advantageous alternative route of administration to subcutaneous injection. One major concern in the formulation of insulin MBF is the preservation of an insulin secondary structure in the presence of the other film components. Buccal films were formulated using chitosan, glycerin, and L-arginine. The MBF-forming solutions (MBF-FS) and the films (MBF) were examined for their chemical and structural stability and for their in vivo activity. Enzyme-Linked Immunosorbent Assay (ELISA) of the insulin-loaded MBF showed that each individualized unit dose was at least loaded with 80% of the insulin theoretical dose. Results of Synchrotron Radiation Circular Dichroism (SRCD) measurements revealed that MBF-FS retained the α-helices and β–sheets conformations of insulin. Fourier transform infrared (FTIR)-microspectroscopy (FTIR-MS) examination of insulin MBF revealed the protective action of L-arginine on insulin structure by interacting with chitosan and minimizing the formation of an unordered structure and β-strand. A blood glucose-lowering effect of insulin MBF was observed in comparison with subcutaneous (S.C) injection using a rat model. As a result; chitosan-based MBFs were formulated and characterized using SRCD and FTIR-MS techniques. Furthermore, the results of in vivo testing suggested the MBFs as a promising delivery system for insulin.
Collapse
|
13
|
Capo A, Natalello A, Marienhagen J, Pennacchio A, Camarca A, Di Giovanni S, Staiano M, D'Auria S, Varriale A. Structural features of the glutamate-binding protein from Corynebacterium glutamicum. Int J Biol Macromol 2020; 162:903-912. [PMID: 32593757 DOI: 10.1016/j.ijbiomac.2020.06.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
Abstract
L-glutamate (Glu) is the major excitatory transmitter in mammalian brain. Inadequate concentration of Glu in the brain correlates to mood disorder. In industry, Glu is used as a flavour enhancer in food and in foodstuff processing. A high concentration of Glu has several effects on human health such as hypersensitive effects, headache and stomach pain. The presence of Glu in food can be detected by different analytical methods based on chromatography, or capillary electrophoresis or amperometric techniques. We have isolated and characterized a glutamate-binding protein (GluB) from the Gram-positive bacteria Corynebacterium glutamicum. Together with GluC protein, GluD protein and the cytoplasmic protein GluA, GluB permits the transport of Glu in/out of cell. In this study, we have investigated the binding features of GluB as well as the effect of temperature on its structure both in the absence and in the presence of Glu. The results have showed that GluB has a high affinity and selectivity versus Glu (nanomolar range) and the presence of the ligand induces a higher thermal stability of the protein structure.
Collapse
Affiliation(s)
- Alessandro Capo
- Institute of Food Science CNR, via Roma 64, 83100 Avellino, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | | | | | | | - Maria Staiano
- Institute of Food Science CNR, via Roma 64, 83100 Avellino, Italy
| | - Sabato D'Auria
- Institute of Food Science CNR, via Roma 64, 83100 Avellino, Italy.
| | - Antonio Varriale
- Institute of Food Science CNR, via Roma 64, 83100 Avellino, Italy
| |
Collapse
|
14
|
Roca-Pinilla R, Fortuna S, Natalello A, Sánchez-Chardi A, Ami D, Arís A, Garcia-Fruitós E. Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications. Microb Cell Fact 2020; 19:175. [PMID: 32887587 PMCID: PMC7650227 DOI: 10.1186/s12934-020-01425-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inclusion bodies (IBs) are biologically active protein aggregates forming natural nanoparticles with a high stability and a slow-release behavior. Because of their nature, IBs have been explored to be used as biocatalysts, in tissue engineering, and also for human and animal therapies. To improve the production and biological efficiency of this nanomaterial, a wide range of aggregation tags have been evaluated. However, so far, the presence in the IBs of bacterial impurities such as lipids and other proteins coexisting with the recombinant product has been poorly studied. These impurities could strongly limit the potential of IB applications, being necessary to control the composition of these bacterial nanoparticles. Thus, we have explored the use of leucine zippers as alternative tags to promote not only aggregation but also the generation of a new type of IB-like protein nanoparticles with improved physicochemical properties. RESULTS Three different protein constructs, named GFP, J-GFP-F and J/F-GFP were engineered. J-GFP-F corresponded to a GFP flanked by two leucine zippers (Jun and Fos); J/F-GFP was formed coexpressing a GFP fused to Jun leucine zipper (J-GFP) and a GFP fused to a Fos leucine zipper (F-GFP); and, finally, GFP was used as a control without any tag. All of them were expressed in Escherichia coli and formed IBs, where the aggregation tendency was especially high for J/F-GFP. Moreover, those IBs formed by J-GFP-F and J/F-GFP constructs were smaller, rougher, and more amorphous than GFP ones, increasing surface/mass ratio and, therefore, surface for protein release. Although the lipid and carbohydrate content were not reduced with the addition of leucine zippers, interesting differences were observed in the protein specific activity and conformation with the addition of Jun and Fos. Moreover, J-GFP-F and J/F-GFP nanoparticles were purer than GFP IBs in terms of protein content. CONCLUSIONS This study proved that the use of leucine zippers strategy allows the formation of IBs with an increased aggregation ratio and protein purity, as we observed with the J/F-GFP approach, and the formation of IBs with a higher specific activity, in the case of J-GFP-F IBs. Thus, overall, the use of leucine zippers seems to be a good system for the production of IBs with more promising characteristics useful for pharma or biotech applications.
Collapse
Affiliation(s)
- Ramon Roca-Pinilla
- Department of Ruminant Production, Institute of Agriculture and Food Research and Technology (IRTA), 08140, Caldes de Montbui, Spain
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Alejandro Sánchez-Chardi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona (UB), 08028, Barcelona, Spain
- Microscopy Service, Autonomous University of Barcelona (UAB), 08193, Cerdanyola del Vallès, Spain
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Food Research and Technology (IRTA), 08140, Caldes de Montbui, Spain.
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Food Research and Technology (IRTA), 08140, Caldes de Montbui, Spain.
| |
Collapse
|
15
|
Sala BM, Le Marchand T, Pintacuda G, Camilloni C, Natalello A, Ricagno S. Conformational Stability and Dynamics in Crystals Recapitulate Protein Behavior in Solution. Biophys J 2020; 119:978-988. [PMID: 32758421 DOI: 10.1016/j.bpj.2020.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022] Open
Abstract
A growing body of evidences has established that in many cases proteins may preserve most of their function and flexibility in a crystalline environment, and several techniques are today capable to characterize molecular properties of proteins in tightly packed lattices. Intriguingly, in the case of amyloidogenic precursors, the presence of transiently populated states (hidden to conventional crystallographic studies) can be correlated to the pathological fate of the native fold; the low fold stability of the native state is a hallmark of aggregation propensity. It remains unclear, however, to which extent biophysical properties of proteins such as the presence of transient conformations or protein stability characterized in crystallo reflect the protein behavior that is more commonly studied in solution. Here, we address this question by investigating some biophysical properties of a prototypical amyloidogenic system, β2-microglobulin in solution and in microcrystalline state. By combining NMR chemical shifts with molecular dynamics simulations, we confirmed that conformational dynamics of β2-microglobulin native state in the crystal lattice is in keeping with what observed in solution. A comparative study of protein stability in solution and in crystallo is then carried out, monitoring the change in protein secondary structure at increasing temperature by Fourier transform infrared spectroscopy. The increased structural order of the crystalline state contributes to provide better resolved spectral components compared to those collected in solution and crucially, the crystalline samples display thermal stabilities in good agreement with the trend observed in solution. Overall, this work shows that protein stability and occurrence of pathological hidden states in crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the biophysical characterization of processes such as unfolding and aggregation.
Collapse
Affiliation(s)
| | - Tanguy Le Marchand
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon), Université de Lyon, Villeurbanne, France
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon), Université de Lyon, Villeurbanne, France
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
16
|
Bacterial production of maize and human serine racemases as partially active inclusion bodies for d-serine synthesis. Enzyme Microb Technol 2020; 137:109547. [DOI: 10.1016/j.enzmictec.2020.109547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 01/31/2023]
|
17
|
Mangiagalli M, Carvalho H, Natalello A, Ferrario V, Pennati ML, Barbiroli A, Lotti M, Pleiss J, Brocca S. Diverse effects of aqueous polar co-solvents on Candida antarctica lipase B. Int J Biol Macromol 2020; 150:930-940. [DOI: 10.1016/j.ijbiomac.2020.02.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/04/2023]
|
18
|
Donnarumma F, Leone S, Delfi M, Emendato A, Ami D, Laurents DV, Natalello A, Spadaccini R, Picone D. Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS J 2019; 287:2808-2822. [DOI: 10.1111/febs.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Federica Donnarumma
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Serena Leone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Masoud Delfi
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Alessandro Emendato
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Douglas V. Laurents
- Institute of Physical Chemistry ‘Rocasolano’ Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Antonino Natalello
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Roberta Spadaccini
- Department of Science and Technology Università degli Studi del Sannio Benevento Italy
| | - Delia Picone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| |
Collapse
|
19
|
Ponzini E, De Palma A, Cerboni L, Natalello A, Rossi R, Moons R, Konijnenberg A, Narkiewicz J, Legname G, Sobott F, Mauri P, Santambrogio C, Grandori R. Methionine oxidation in α-synuclein inhibits its propensity for ordered secondary structure. J Biol Chem 2019; 294:5657-5665. [PMID: 30755483 DOI: 10.1074/jbc.ra118.001907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/30/2019] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or β-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.
Collapse
Affiliation(s)
- Erika Ponzini
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonella De Palma
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Lucilla Cerboni
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Rossana Rossi
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Rani Moons
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Albert Konijnenberg
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joanna Narkiewicz
- the Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A, 34136 Trieste, Italy
| | - Giuseppe Legname
- the Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A, 34136 Trieste, Italy
| | - Frank Sobott
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,the School of Molecular and Cellular Biology, University of Leeds, Leeds LS29JT, United Kingdom, and.,the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - PierLuigi Mauri
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Carlo Santambrogio
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy,
| | - Rita Grandori
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy,
| |
Collapse
|
20
|
Ami D, Mereghetti P, Foli A, Tasaki M, Milani P, Nuvolone M, Palladini G, Merlini G, Lavatelli F, Natalello A. ATR-FTIR Spectroscopy Supported by Multivariate Analysis for the Characterization of Adipose Tissue Aspirates from Patients Affected by Systemic Amyloidosis. Anal Chem 2019; 91:2894-2900. [PMID: 30676723 DOI: 10.1021/acs.analchem.8b05008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deposition of misfolded proteins as extracellular amyloid aggregates is the pathological hallmark of systemic amyloidoses. Subcutaneous fat acquired by fine needle aspiration is the preferred screening tissue in suspected patients. In this study we employed Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) to investigate human abdominal fat aspirates with the aim of detecting disease-related changes in the molecular structure and composition of the tissue and exploiting the potentiality of the method to discriminate between amyloid-positive and -negative samples. The absorption and second-derivative spectra of Congo Red (CR) positive and CR-negative specimens were analyzed by three multivariate methods in four spectral regions. The proposed ATR-FTIR method is label-free, rapid, and relatively inexpensive and requires minimal sample preparation. We found that the ATR-FTIR approach can differentiate fat aspirates containing amyloid deposits from control specimens with high sensitivity and specificity, both at 100 [89-100]%. It is worth noting that the wavenumbers most important for discrimination indicate that changes both in the protein conformation and in resident lipids are intrinsic features of affected subcutaneous fat in comparison with the CR-negative controls. In this proof of concept study, we show that this approach could be useful for assessing tissue amyloid aggregates and for acquiring novel knowledge of the molecular bases of the disease.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Paolo Mereghetti
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Andrea Foli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Masayoshi Tasaki
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy.,Department of Morphological and Physiological Sciences, Graduate School of Health Sciences , Kumamoto University , 4-24-1 Kuhonji , Kumamoto 862-0976 , Japan.,Department of Neurology, Graduate School of Medical Sciences , Kumamoto University , 1-1-1 Honjo , Kumamoto 860-0811 , Japan
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| |
Collapse
|
21
|
An integrated strategy to correlate aggregation state, structure and toxicity of Aß 1-42 oligomers. Talanta 2018; 188:17-26. [PMID: 30029360 DOI: 10.1016/j.talanta.2018.05.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023]
Abstract
Despite great efforts, it is not known which oligomeric population of amyloid beta (Aß) peptides is the main neurotoxic mediator in Alzheimer's disease. In vitro and in vivo experiments are challenging, mainly because of the high aggregation tendency of Aß (in particular of Aß 1-42 peptide), as well as because of the dynamic and non covalent nature of the prefibrillar aggregates. As a step forward in these studies, an analytical platform is here proposed for the identification and characterization of Aß 1-42 oligomeric populations resulting from three different sample preparation protocols. To preserve the transient nature of aggregates, capillary electrophoresis is employed for monitoring the oligomerization process in solution until fibril precipitation, which is probed by transmission electron microscopy. Based on characterization studies by ultrafiltration and SDS-PAGE/Western Blot, we find that low molecular weight oligomers build up over time and form bigger aggregates (> dodecamers) and that the kinetics strongly depends on sample preparations. The use of phosphate buffer results to be more aggregating, since trimers are the smallest species found in solution, whereas monomers and dimers are obtained by solubilizing Aß 1-42 in a basic mixture. For the first time, attenuated total reflection-Fourier transform infrared spectroscopy is used to assign secondary structure to the separated oligomers. Random coil and/or α-helix are most abundant in smaller species, whereas ß-sheet is the predominant conformation in bigger aggregates, which in turn are demonstrated to be responsible for Aß 1-42 toxicity.
Collapse
|
22
|
Inhibition of lysozyme fibrillogenesis by hydroxytyrosol and dopamine: An Atomic Force Microscopy study. Int J Biol Macromol 2018; 111:1100-1105. [PMID: 29360548 DOI: 10.1016/j.ijbiomac.2018.01.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/01/2023]
Abstract
Protein aggregation underlies many human diseases characterized by the deposition of normally soluble proteins in both fibrillar and amorphous aggregates. Here, Atomic Force Microscopy (AFM) has been applied to investigate the ability to inhibit hen egg white lysozyme (HEWL) fibrillogenesis by hydroxytyrosol (HT), one of the main phenolic components of olive oil. In this framework, HEWL is a useful and well-studied model protein whose amyloid-like fibril formation can be induced under experimental conditions where HT is more stable. HEWL fibrils, obtained at pH 1.6 and at 65 °C, exhibited a height of about 3 nm and a fibril length on average of about 3 μm. The presence of HT reduced the HEWL fibril number and length with respect to the control sample. Interestingly, also dopamine, a compound with a chemical structure similar to HT, decreased both the fibril number and the fibril length. AFM experimental data were supported by Thioflavin T assay and Fourier transform infrared spectroscopy. Our results show that HT is an effective inhibitor of HEWL aggregation, thus suggesting possible future applications of this natural compound for potential prevention or treatment of amyloid diseases, or as a lead molecular structure for the design of improved modulators.
Collapse
|
23
|
Insights into Insulin Fibril Assembly at Physiological and Acidic pH and Related Amyloid Intrinsic Fluorescence. Int J Mol Sci 2017; 18:ijms18122551. [PMID: 29182566 PMCID: PMC5751154 DOI: 10.3390/ijms18122551] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/10/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Human insulin is a widely used model protein for the study of amyloid formation as both associated to insulin injection amyloidosis in type II diabetes and highly prone to form amyloid fibrils in vitro. In this study, we aim to gain new structural insights into insulin fibril formation under two different aggregating conditions at neutral and acidic pH, using a combination of fluorescence, circular dichroism, Fourier-transform infrared spectroscopy, and transmission electron miscroscopy. We reveal that fibrils formed at neutral pH are morphologically different from those obtained at lower pH. Moreover, differences in FTIR spectra were also detected. In addition, only insulin fibrils formed at neutral pH showed the characteristic blue-green fluorescence generally associated to amyloid fibrils. So far, the molecular origin of this fluorescence phenomenon has not been clarified and different hypotheses have been proposed. In this respect, our data provide experimental evidence that allow identifying the molecular origin of such intrinsic property.
Collapse
|
24
|
Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides. Acta Biomater 2017; 51:268-278. [PMID: 28093364 DOI: 10.1016/j.actbio.2017.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Self-assembling (SAPs) and co-assembling peptides (CAPs) are driving increasing enthusiasm as synthetic but biologically inspired biomaterials amenable of easy functionalization for regenerative medicine. On the other hand, electrospinning (ES) is a versatile technique useful for tailoring the nanostructures of various biomaterials into scaffolds resembling the extracellular matrices found in organs and tissues. The synergistic merging of these two approaches is a long-awaited advance in nanomedicine that has not been deeply documented so far. In the present work, we describe the successful ES of a library of diverse SAPs and CAPs into biomimetic nanofibrous mats. Our results suggest that suitable ES solutions are characterized by high concentrations of peptides, providing backbone physical chain entanglements, and by random coil/α-helical conformations while β-sheet aggregation may be detrimental to spinnability. The resulting peptide fibers feature interconnected seamless mats with nanofibers average diameters ranging from ∼100nm to ∼400nm. Also, peptide chemical nature and ES set up parameters play pivotal roles in determining the conformational transitions and morphological properties of the produced nanofibers. Far from being an exhaustive description of the just-opened novel field of ES-assembled peptides, this seminal work aims at shining a light on a still missing general theory for the production of electrospun peptidic biomaterials bringing together the spatial, biochemical and biomimetic of these two techniques into unique scaffolds for tissue engineering. STATEMENT OF SIGNIFICANCE Construction of peptide hydrogels has received considerable attention due to their potential as nanostructures amenable of easy functionalization and capable of creating microenvironments suited for culturing cells and triggering tissue regeneration. They display a superior biocompatibility unmatched by other known synthetic biomaterials so far. However, their applications are confined to body fillers because most of them do spontaneously form hydrogels, while effective tissue regeneration often requires well-defined fibrous scaffolds. In this work, we developed electrospun fibers of various peptides (cross-beta self-assembling, hierarchically assembling, functionalized, co-assembling) and we provided a deep understanding of the crucial phenomena to be taken into account when peptides fibers fabrication. These results open new venues for exploring novel regenerative applications of peptide nanofibrous scaffolds.
Collapse
|
25
|
Wu LC, Chen F, Lee SL, Raw A, Yu LX. Building parity between brand and generic peptide products: Regulatory and scientific considerations for quality of synthetic peptides. Int J Pharm 2017; 518:320-334. [DOI: 10.1016/j.ijpharm.2016.12.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023]
|
26
|
Dissecting the contribution of Staphylococcus aureus α-phenol-soluble modulins to biofilm amyloid structure. Sci Rep 2016; 6:34552. [PMID: 27708403 PMCID: PMC5052566 DOI: 10.1038/srep34552] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/15/2016] [Indexed: 11/23/2022] Open
Abstract
The opportunistic pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently discovered phenol soluble modulins (PSMs) are small α-helical amphipathic peptides that act as the main molecular effectors of staphylococcal biofilm maturation, promoting the formation of an extracellular fibril structure with amyloid-like properties. Here, we combine computational, biophysical and in cell analysis to address the specific contribution of individual PSMs to biofilm structure. We demonstrate that despite their highly similar sequence and structure, contrary to what it was previously thought, not all PSMs participate in amyloid fibril formation. A balance of hydrophobic/hydrophilic forces and helical propensity seems to define the aggregation propensity of PSMs and control their assembly and function. This knowledge would allow to target specifically the amyloid properties of these peptides. In this way, we show that Epigallocatechin-3-gallate (EGCG), the principal polyphenol in green tea, prevents the assembly of amyloidogenic PSMs and disentangles their preformed amyloid fibrils.
Collapse
|
27
|
Cano-Garrido O, Sánchez-Chardi A, Parés S, Giró I, Tatkiewicz WI, Ferrer-Miralles N, Ratera I, Natalello A, Cubarsi R, Veciana J, Bach À, Villaverde A, Arís A, Garcia-Fruitós E. Functional protein-based nanomaterial produced in microorganisms recognized as safe: A new platform for biotechnology. Acta Biomater 2016; 43:230-239. [PMID: 27452157 DOI: 10.1016/j.actbio.2016.07.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Inclusion bodies (IBs) are protein-based nanoparticles formed in Escherichia coli through stereospecific aggregation processes during the overexpression of recombinant proteins. In the last years, it has been shown that IBs can be used as nanostructured biomaterials to stimulate mammalian cell attachment, proliferation, and differentiation. In addition, these nanoparticles have also been explored as natural delivery systems for protein replacement therapies. Although the production of these protein-based nanomaterials in E. coli is economically viable, important safety concerns related to the presence of endotoxins in the products derived from this microorganism need to be addressed. Lactic acid bacteria (LAB) are a group of food-grade microorganisms that have been classified as safe by biologically regulatory agencies. In this context, we have demonstrated herein, for the first time, the production of fully functional, IB-like protein nanoparticles in LAB. These nanoparticles have been fully characterized using a wide range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, zymography, cytometry, confocal microscopy, and wettability and cell coverage measurements. Our results allow us to conclude that these materials share the main physico-chemical characteristics with IBs from E. coli and moreover are devoid of any harmful endotoxin contaminant. These findings reveal a new platform for the production of protein-based safe products with high pharmaceutical interest. STATEMENT OF SIGNIFICANCE The development of both natural and synthetic biomaterials for biomedical applications is a field in constant development. In this context, E. coli is a bacteria that has been widely studied for its ability to naturally produce functional biomaterials with broad biomedical uses. Despite being effective, products derived from this species contain membrane residues able to trigger a non-desired immunogenic responses. Accordingly, exploring alternative bacteria able to synthesize such biomaterials in a safe molecular environment is becoming a challenge. Thus, the present study describes a new type of functional protein-based nanomaterial free of toxic contaminants with a wide range of applications in both human and veterinary medicine.
Collapse
|
28
|
Ami D, Lavatelli F, Rognoni P, Palladini G, Raimondi S, Giorgetti S, Monti L, Doglia SM, Natalello A, Merlini G. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study. Sci Rep 2016; 6:29096. [PMID: 27373200 PMCID: PMC4931462 DOI: 10.1038/srep29096] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
29
|
Huang YT, 1 Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsin Chu, Taiwan, ROC, Liao HF, Wang SL, Lin SY. Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique. AIMS BIOPHYSICS 2016; 3:247-260. [DOI: 10.3934/biophy.2016.2.247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
30
|
Navarro S, Marinelli P, Diaz-Caballero M, Ventura S. The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria. Microb Cell Fact 2015; 14:102. [PMID: 26160665 PMCID: PMC4498515 DOI: 10.1186/s12934-015-0284-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023] Open
Abstract
Background The formation of protein inclusions is connected to the onset of many human diseases. Human RNA binding proteins containing intrinsically disordered regions with an amino acid composition resembling those of yeast prion domains, like TDP-43 or FUS, are being found to aggregate in different neurodegenerative disorders. The structure of the intracellular inclusions formed by these proteins is still unclear and whether these deposits have an amyloid nature or not is a matter of debate. Recently, the aggregation of TDP-43 has been modelled in bacteria, showing that TDP-43 inclusion bodies (IBs) are amorphous but intrinsically neurotoxic. This observation raises the question of whether it is indeed the lack of an ordered structure in these human prion-like protein aggregates the underlying cause of their toxicity in different pathological states. Results Here we characterize the IBs formed by the human prion-like RNA-processing protein HNRPDL. HNRPDL is linked to the development of limb-girdle muscular dystrophy 1G and shares domain architecture with TDP-43. We show that HNRPDL IBs display characteristic amyloid hallmarks, since these aggregates bind to amyloid dyes in vitro and inside the cell, they are enriched in intermolecular β-sheet conformation and contain inner amyloid-like fibrillar structure. In addition, despite their ordered structure, HNRPDL IBs are highly neurotoxic. Conclusions Our results suggest that at least some of the disorders caused by the aggregation of human prion-like proteins would rely on the formation of classical amyloid assemblies rather than being caused by amorphous aggregates. They also illustrate the power of microbial cell factories to model amyloid aggregation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0284-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Patrizia Marinelli
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Marta Diaz-Caballero
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|